Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Artículo en Inglés | MEDLINE | ID: mdl-36193131

RESUMEN

Osteoporosis is a common disease that increases the risk of fractures due to decreased bone density and weakens the bone microstructure. Preventing and diagnosing osteoporosis using the available drugs can be a costly affair with possible side effects. Therefore, natural product-derived therapeutics are promising alternatives. Our study demonstrated that the oat seedlings' extract (OSE) inhibited the receptor activator of the nuclear factor κB ligand (RANKL)-induced osteoclastogenesis from the bone marrow-derived macrophages (BMMs). The OSE treatment significantly attenuated the RANKL-mediated induction of the tartrate-resistant acid phosphatase (TRAP) activity as well as the number of TRAP-positive (TRAP+) multinucleated cells (MNCs) counted through the TRAP staining in a dose-dependent manner. It was also confirmed that the OSE suppressed the formation of the TRAP + MNCs in the early stage of differentiation and not in the middle and late stages. The results of the real-time quantitative polymerase chain reaction (qPCR) and the western blotting showed that the OSE dramatically inhibited the mRNA and protein expressions of the osteoclastogenesis-mediated transcription factors such as the c-Fos and the nuclear factor-activated T cells c1 (NFATc1). In addition, the OSE strongly attenuated the mRNA induction of the c-Fos/NFATc1-dependent molecules such as the TRAP, the osteoclast-associatedimmunoglobulin-like receptor (OSCAR), the dendritic cell-specific transmembrane protein (DC-STAMP), and the cathepsin K. These results suggest that the naturally derived OSE may be useful for preventing bone diseases.

2.
Phytother Res ; 33(5): 1490-1500, 2019 May.
Artículo en Inglés | MEDLINE | ID: mdl-30883927

RESUMEN

Improvement of bone formation is necessary for successful treatment of the bone defects associated with osteoporosis. In this study, we sought to elucidate the osteogenic activity of peanut sprouts and their bioactive components. We found that peanut sprout water extract (PSWE) enhanced bone morphogenetic protein-2-mediated osteoblast differentiation in a dose-dependent manner by stimulating expression of runt-related transcription factor 2 (Runx2) via activation of AKT/MAP kinases. We identified a major component of PSWE, soyasaponin Bb, as the bioactive compound responsible for improvement of anabolic activity. Soyasaponin Bb from PSWE enhanced expression of the osteogenic transcription factor Runx2 and alkaline phosphatase. The soyasaponin Bb content depended on sprouting time of peanut, and the anabolic action of PSWE was dependent on soyasaponin Bb content. Thus, PSWE and soyasaponin Bb have the potential to protect against bone disorders, including osteoporosis.


Asunto(s)
Arachis/química , Proteínas Morfogenéticas Óseas/metabolismo , Osteoblastos/metabolismo , Osteogénesis/fisiología , Osteoporosis/dietoterapia , Saponinas/metabolismo , Plantones/química , Diferenciación Celular , Proliferación Celular , Osteoporosis/patología , Factores de Transcripción
3.
Food Funct ; 10(2): 836-848, 2019 Feb 20.
Artículo en Inglés | MEDLINE | ID: mdl-30681105

RESUMEN

Obesity is a worldwide public health concern requiring safe and effective strategies. Recent studies suggest that bioactive compounds from soybeans have beneficial effects on weight loss and reducing fat accumulation. However, despite the biochemical and nutritional changes during germination, the biological effects of germinated soy germ have not been fully investigated. In this article, germinated soy germ extract (GSGE) was evaluated as a potential treatment option for obesity using 3T3-L1 pre-adipocyte and high-fat diet (HFD)-induced obese mice. In vitro studies demonstrated that GSGE suppressed the differentiation of 3T3-L1 cells into mature adipocytes, along with reductions in lipid accumulation and lipid droplet formation. In vivo studies also showed that a daily dose of 1 mg kg-1 of GSGE reduced weight gain, adipocyte area, serum triglyceride, and LDL-cholesterol in HFD-fed mice. The GSGE treatment promoted browning, which was associated with increased UCP1 expression in vitro and in vivo. In addition, GSGE treatment induced beige fat activation by upregulation of lipolysis and beta-oxidation. Furthermore, gene and protein expression levels of endocannabinoid system-related factors such as NAPE-PLD, FAAH, DAGL-α, and CB2 were altered along with browning and beige fat activation by GSGE. The present study indicates that GSGE effectively inhibits lipid accumulation and promotes beige fat transition and activation. Therefore, we suggest that GSGE treatment could be a promising strategy for the prevention of obesity by promoting weight loss, reducing fat accumulation, and improving obesity-related metabolic disorders.


Asunto(s)
Tejido Adiposo Beige/efectos de los fármacos , Glycine max/química , Obesidad/prevención & control , Extractos Vegetales/farmacología , Saponinas/farmacología , Células 3T3-L1 , Tejido Adiposo Beige/fisiología , Animales , Supervivencia Celular , Dieta Alta en Grasa/efectos adversos , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Ratones , Ratones Endogámicos C57BL , Extractos Vegetales/química , Saponinas/química
4.
Molecules ; 23(12)2018 Nov 28.
Artículo en Inglés | MEDLINE | ID: mdl-30487443

RESUMEN

The number of patients with bone metabolic disorders including osteoporosis is increasing worldwide. These disorders often facilitate bone fractures, which seriously impact the patient's quality of life and could lead to further health complications. Bone homeostasis is tightly regulated to balance bone resorption and formation. However, many anti-osteoporotic agents are broadly categorized as either bone forming or anti-resorptive, and their therapeutic use is often limited due to unwanted side effects. Therefore, safe and effective therapeutic agents are needed for osteoporosis. This study aims to clarify the bone protecting effects of oat bran water extract (OBWE) and its mode of action. OBWE inhibited RANKL (receptor activator of nuclear factor-κB ligand)-induced osteoclast differentiation by blocking c-Fos/NFATc1 through the alteration of I-κB. Furthermore, we found that OBWE enhanced BMP-2-stimulated osteoblast differentiation by the induction of Runx2 via Smad signaling molecules. In addition, the anti-osteoporotic activity of OBWE was also evaluated using an in vivo model. OBWE significantly restored ovariectomy-induced bone loss. These in vitro and in vivo results showed that OBWE has the potential to prevent and treat bone metabolic disorders including osteoporosis.


Asunto(s)
Avena/química , Diferenciación Celular/efectos de los fármacos , Fibras de la Dieta , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Extractos Vegetales/farmacología , Agua/química , Animales , Femenino , Masculino , Ratones , Ratones Endogámicos ICR , Osteoblastos/citología , Osteoclastos/citología , Extractos Vegetales/química , Transducción de Señal/efectos de los fármacos
5.
Artículo en Inglés | MEDLINE | ID: mdl-28567098

RESUMEN

The number of patients with osteoporosis is increasing worldwide, and a decrease in bone mass is a main risk factor for fracture. The prevention of bone loss is critical for improving the quality of life for patients. However, the long-term use of antiosteoporotic agents is limited due to their side effects. Barley has been traditionally ingested for thousands of years as a safe, natural food with pharmaceutical properties, and its seedling can enhance the biological activity of the medicinal components found in food. This study aimed to clarify the antiresorptive activity of barley seedling and its mode of action. Barley seedling extracts (BSE) dose-dependently inhibited RANKL-induced osteoclast differentiation with alteration of IκB degradation, c-Fos, and NFATc1 molecules in the early-to-middle stages of osteoclastogenesis. In the late phase of osteoclastogenesis, BSE also prevented DC-STAMP and cathepsin K, which are required for cell fusion and bone degradation, such as osteoclast function. In conclusion, barley seedling from natural foods may provide long-term safety and be useful for the prevention or treatment of osteoclast-mediated bone metabolic diseases, including osteoporosis.

6.
Phytother Res ; 29(7): 1073-80, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25869918

RESUMEN

Bone is maintained by osteoclast-mediated resorption and osteoblast-mediated formation. Recently, anti-osteoporotic activity of Saururus chinensis extract (SCE) and anti-osteoclastogenic activity of its components have been reported, but the effect of SCE on bone formation has not been studied well. Therefore, in this study, we investigated whether Saururus chinensis SCE exhibits in vitro osteogenic and in vivo bone-forming activity. extract strongly enhanced the bone morphogenetic protein (BMP)-2-stimulated induction of alkaline phosphatase, an early phase biomarker of osteoblast differentiation, in bi-potential mesenchymal progenitor C2C12 cells. In vitro osteogenic activity of SCE was accompanied by enhanced expression of BMP-2, BMP-4, BMP-7 and BMP-9 mRNA. In addition, a pharmacological inhibition study suggested the involvement of p38 activation in the osteogenic action of SCE. Moreover, the BMP dependency and the involvement of p38 activation in the osteogenic action of SCE were confirmed by the treatment of noggin, an antagonist of BMP. Saururus chinensis extract also exhibited to induce runt-related transcription factor 2 activation at the high concentration. Furthermore, the in vivo osteogenic activity of SCE was confirmed in zebrafish and mouse calvarial bone formation models, suggesting the possibility of its use for bone formation. In conclusion, we suggested that in vivo anti-osteoporotic activity of SCE could be because of its dual action in bone, anti-osteoclastogenic and anabolic activity.


Asunto(s)
Proteínas Morfogenéticas Óseas/metabolismo , Osteoblastos/efectos de los fármacos , Osteogénesis/efectos de los fármacos , Extractos Vegetales/farmacología , Saururaceae/química , Fosfatasa Alcalina/metabolismo , Animales , Diferenciación Celular/efectos de los fármacos , Línea Celular , Subunidad alfa 1 del Factor de Unión al Sitio Principal/metabolismo , Ratones , Ratones Endogámicos ICR , Pez Cebra , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
7.
BMC Complement Altern Med ; 14: 35, 2014 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-24444335

RESUMEN

BACKGROUND: Matairesinol is a plant lignan present in a wide variety of foodstuffs such as seeds, vegetables and fruits. It has various biological functions including anti-angiogenic, anti-cancer and anti-fungal activities, but its anti-osteoporotic activity, if any, is unknown. METHODS: For osteoclast differentiation, primary mouse bone marrow-derived macrophage cells (BMMs) were cultured for 4 days in the presence of RANKL and M-CSF with the vehicle (DMSO) or matairesinol. Cell cytotoxicity was examined by CCK-8 assay. Gene expression of NFATc1, TRAP, OSCAR, v-ATPasev0d2 were observed in the presence or absence of matairesinol (10 µM) for the indicated times. For evaluating the involvement of NFATc1 in the anti-osteoclastogenic action of matairesinol, BMMs were infected with pMX-IRES-GFP or pMX-IRES-CA-NFATc1-GFP for 8 h with polybrene, and then infected BMMs were cultured with M-CSF and RANKL for 4 days in the presence or absence of matairesinol (10 µM). MAPK signaling activation was examined by immunoblotting. For measuring the resorptive activity of mature osteoclasts, osteoclasts and osteoblasts were co-cultured on BioCoat Osteologic MultiTest slides, and treated with matairesinol for 24 h. RESULT: Here we show that matairesinol dose-dependently inhibited the RANKL-induced differentiation of BMMs into osteoclasts by downregulating RANKL-induced expression and activity of NFATc1. Ectopic overexpression of NFATc1 blunted the anti-osteoclastogenic effect of matairesinol implicating NFATc1 in the action of matairesinol. Additionally, matairesinol blocked the RANKL-induced activation of p38 and ERK in BMMs, but had no effect on bone resorption activity in mature osteoclasts. CONCLUSION: Taken together, our results suggest that the anti-osteoporotic activity of matairesinol could arise from its anti-osteoclastogenic potential via p38/ERK-NFATc1 signaling, but not by way of anti-resorptive action.


Asunto(s)
Resorción Ósea/prevención & control , Furanos/farmacología , Lignanos/farmacología , Macrófagos/efectos de los fármacos , Osteoclastos/efectos de los fármacos , Osteoporosis/metabolismo , Extractos Vegetales/farmacología , Animales , Resorción Ósea/metabolismo , Diferenciación Celular/efectos de los fármacos , Regulación hacia Abajo/efectos de los fármacos , Quinasas MAP Reguladas por Señal Extracelular/metabolismo , Furanos/uso terapéutico , Lignanos/uso terapéutico , Factor Estimulante de Colonias de Macrófagos/genética , Macrófagos/metabolismo , Masculino , Ratones Endogámicos ICR , Factores de Transcripción NFATC/metabolismo , Osteoblastos/efectos de los fármacos , Osteoblastos/metabolismo , Osteoclastos/metabolismo , Osteoporosis/prevención & control , Fosforilación , Fitoterapia , Extractos Vegetales/uso terapéutico , Plantas Comestibles/química , Ligando RANK/metabolismo , Transducción de Señal/efectos de los fármacos , Factores de Transcripción/metabolismo , Proteínas Quinasas p38 Activadas por Mitógenos/metabolismo
8.
Artículo en Inglés | MEDLINE | ID: mdl-23509596

RESUMEN

Antlers have been traditionally used for thousands of years as a natural product with medicinal and pharmaceutical properties. In developing healthy foods, Bacillus-mediated fermentation is widely used to enhance the biological activity of nutrients in foods. Recently, fermentation was shown to enhance the osteogenic activity of antlers. This study aimed to elucidate the antiresorptive activity of Bacillus-fermented antler and its mode of action. We found that Bacillus-fermented antler extract strongly inhibited osteoclast differentiation by downregulating the expression and activity of nuclear factor of activated T cells, cytoplasmic 1 (NFATc1). This extract also inhibited the activation of phospholipase C γ 2 (PLC γ 2), a signaling molecule that could regulate NFATc1 transcriptional activity. This suggested that Bacillus-fermented antler extract could inhibit PLC γ 2-NFATc1 signaling required for bone resorption and cell fusion. Consequently, Bacillus-fermented antler extract might benefit osteoclast-related disorders, including osteoporosis; furthermore, it may improve gastrointestinal activity.

9.
Artículo en Inglés | MEDLINE | ID: mdl-23008743

RESUMEN

The prevention or therapeutic treatment of loss of bone mass is an important means of improving the quality of life for patients with disorders related to osteoclast-mediated bone loss. Fisetin, a flavonoid dietary ingredient found in the smoke tree (Continus coggygria), exhibits various biological activities, but its effect on osteoclast differentiation is unknown. In this study, fisetin dose-dependently inhibited the RANKL-induced osteoclast differentiation with downregulation of the activity or expression of p38, c-Fos, and NFATc1 signaling molecules. The p38/c-Fos/NFATc1-regulated expression of genes required for cell fusion and bone resorption, such as DC-STAMP and cathepsin K, was also inhibited by fisetin. Considering the rescue of fisetin's inhibitory action by NFATc1 over-expression, the cascade of p38-c-Fos-NFATc1 could be strongly involved in the inhibitory effect of fisetin on osteoclast differentiation. Furthermore, fisetin inhibited the bone-resorbing activity of mature osteoclasts. In conclusion, fisetin may be of use in the treatment of osteoclast-related disorders, including osteoporosis.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA