RESUMEN
Head and neck squamous cell carcinoma (HNSCC) is a highly lethal cancer. Previously, we identify head and neck cancer initiating cells (HN-CICs), which are highly tumorigenic and resistant to conventional therapy. Therefore, development of drug candidates that effectively target HN-CICs would benefit future head and neck cancer therapy. In this study, we first successfully screened for an active component, named YMGKI-1, from natural products of Antrodia cinnamomea Mycelia (ACM), which can target the stemness properties of HNSCC. Treatment of YMGKI-1 significantly downregulated the aldehyde dehydrogenase (ALDH) activity, one of the characteristics of CIC in HNSCC cells. Additionally, the tumorigenic properties of HNSCC cells were attenuated by YMGKI-1 treatment in vivo. Further, the stemness properties of HN-CICs, which are responsible for the malignancy of HNSCC, were also diminished by YMGKI-1 treatment. Strikingly, YMGKI-1 also effectively suppressed the cell viability of HN-CICs but not normal stem cells. Finally, YMGKI-1 induces the cell death of HN-CICs by dysregulating the exaggerated autophagic signaling pathways. Together, our results indicate that YMGKI-1 successfully lessens stemness properties and tumorigenicity of HN-CICs. These findings provide a new drug candidate from purified components of ACM as an alternative therapy for head and neck cancer in the future.
RESUMEN
AIM: The present study was aimed at investigating the effect of trans-6-(4-chlorobutyl)-5-hydroxy-4-(phenylthio)-1-tosyl-5,6-dihydropyridine-2(1H)-one (HTDP-2), a novel synthetic compound, on the release of endogenous glutamate in rat cerebrocortical nerve terminals (synaptosomes) and exploring the possible mechanism. METHODS: The release of glutamate was evoked by the K⺠channel blocker 4-aminopyridine (4-AP) and measured by an on-line enzyme-coupled fluorimetric assay. We also used a membrane potential-sensitive dye to assay nerve terminal excitability and depolarization, and a Ca²âº indicator, Fura-2-acetoxymethyl ester, to monitor cytosolic Ca²âº concentrations ([Ca²âº](c)). RESULTS: HTDP-2 inhibited the release of glutamate evoked by 4-AP in a concentration-dependent manner. Inhibition of glutamate release by HTDP-2 was prevented by the chelating intraterminal Ca²âº ions, and by the vesicular transporter inhibitor bafilomycin A1, but was insensitive to the glutamate transporter inhibitor DL-threo-ß-benzyloxyaspartate. HTDP-2 did not alter the resting synaptosomal membrane potential or 4-AP-mediated depolarization whereas it decreased the 4-AP-induced increase in [Ca²âº](c). Furthermore, the inhibitory effect of HTDP-2 on the evoked glutamate release was abolished by the N-, and P/Q-type Ca²âº channel blocker ω-conotoxin MVIIC, but not by the ryanodine receptor blocker dantrolene, or the mitochondrial Naâº/Ca²âº exchanger blocker CGP37157. CONCLUSION: Based on these results, we suggest that, in rat cerebrocortical nerve terminals, HTDP-2 decreases voltage-dependent Ca²âº channel activity and, in so doing, inhibits the evoked glutamate release.
Asunto(s)
Bloqueadores de los Canales de Calcio/farmacología , Canales de Calcio/fisiología , Corteza Cerebral/fisiología , Ácido Glutámico/fisiología , Fármacos Neuroprotectores/farmacología , Piridonas/farmacología , Compuestos de Tosilo/farmacología , 4-Aminopiridina/farmacología , Sistema de Transporte de Aminoácidos X-AG/metabolismo , Animales , Calcio/análisis , Calcio/fisiología , Bloqueadores de los Canales de Calcio/síntesis química , Bloqueadores de los Canales de Calcio/toxicidad , Canales de Calcio/metabolismo , Clonazepam/análogos & derivados , Clonazepam/farmacología , Citosol/fisiología , Dantroleno/farmacología , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos , Interacciones Farmacológicas , Ácido Glutámico/análisis , Ácido Glutámico/toxicidad , Masculino , Potenciales de la Membrana , Terminaciones Nerviosas/fisiología , Fármacos Neuroprotectores/síntesis química , Fármacos Neuroprotectores/toxicidad , Bloqueadores de los Canales de Potasio/farmacología , Piridonas/síntesis química , Piridonas/toxicidad , Ratas , Ratas Sprague-Dawley , Inhibidores del Simportador de Cloruro Sódico y Cloruro Potásico/farmacología , Sinaptosomas/fisiología , Tiazepinas/farmacología , Compuestos de Tosilo/síntesis química , Compuestos de Tosilo/toxicidadRESUMEN
Folic acid plays an important role in neuronal development. A series of newly synthesized bioactive compounds (NSCs) was reported to exhibit immunoactive and neuroprotective functions. The isolated and combined effects of folic acid and NSCs against beta-amyloid (Abeta)-induced cytotoxicity are poorly understood. These effects were tested using human microglia cells (C13NJ) subjected to Abeta(25-35) challenge. According to an MTT assay, treatment of C13NJ cells with Abeta(25-35) at 10-100 microM for 48 h induced 18%-43% cellular death in a dose-dependent manner (p < 0.05). Abeta(25-35) treatment at 25 microM induced nitrite oxide (NO) release, elevated superoxide production, and reduced the distribution of cells in the S phase. Preincubation of C13NJ with 100 microM folic acid protected against Abeta(25-35)-induced cell death, which coincided with a reduction in NO release by folic acid supplements. NSC47 at a level of 50 microM protected against Abeta(25-35)-induced cell death and reduced Abeta-promoted superoxide production (p < 0.05). Folic acid in combination with NSC47 at their cytoprotective doses did not synergistically ameliorate Abeta(25-35)-associated NO release, superoxide production, or cell cycle arrest. Taken together, folic acid or NSC treatment alone, but not the combined regimen, protected against Abeta(25-35)-induced cell death, which may partially, if not completely, be mediated by free radical-scavenging effects.