Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Med Phys ; 36(5): 1587-94, 2009 May.
Artículo en Inglés | MEDLINE | ID: mdl-19544774

RESUMEN

This study evaluated the dosimetry of electron backscatter when Solid Water is used to substitute water as phantom in electron radiotherapy. Monte Carlo simulation (EGSnrc-based code) was employed to predict electron energy spectra and depth doses for the 0.5 and 1 cm of Solid Water and water slabs above 3 mm of lead (Pb) layers using electron beams with energies of 4 and 6 MeV. For comparison, Monte Carlo simulations were repeated with Pb layers taken out from the phantoms using the same experimental configuration. Analyses on electron energy spectra for the 4 and 6 MeV electron beams showed that deviations of electron energy distributions between the Solid Water and water phantom were more significant in the high-energy range (i.e., close to the maximal electron energy) than the lower range corresponding to the electron backscatter. These deviations of electron energy spectra varied with depth and were mainly due to the electron fluence or beam attenuation. Dosimetry results from Monte Carlo simulations showed that the Solid Water phantom had lower depth dose compared to water with the same experimental setup. For the 4 MeV electron beams with 0.5 cm of Solid Water, depth doses were 1.8%-3.9% and 2.3%-4.4% lower than those in water, with and without the Pb layer underneath, respectively. Thicker Solid Water of 1 cm resulted in different decreases in depth doses of 1.8%-4.6% (with Pb) and 2.3%-4.4% (without Pb) compared to water. For higher nominal electron beam energy of 6 MeV with 0.5 cm of Solid Water, depth doses decreased 1.7%-2.9% (with Pb) and 1.6%-2.1% (without Pb) compared to water. These decreases in depth doses changed to 1.7%-3.7% (with Pb) and 1.7%-3% (without Pb) when the thickness of Solid Water was increased to 1 cm. The dosimetry data in this study are useful in determining the correction factor when using Solid Water to substitute water for the electron backscatter measurement in electron radiotherapy.


Asunto(s)
Electrones/uso terapéutico , Radiometría/métodos , Planificación de la Radioterapia Asistida por Computador/métodos , Radioterapia Asistida por Computador/métodos , Agua/química , Ensayo de Materiales , Método de Montecarlo , Dispersión de Radiación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA