Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Nutr ; 138(12): 2316-22, 2008 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-19022951

RESUMEN

Transposable elements such as long terminal repeats (LTR) constitute approximately 45% of the human genome; transposition events impair genome stability. Fifty-four promoter-active retrotransposons have been identified in humans. Epigenetic mechanisms are important for transcriptional repression of retrotransposons, preventing transposition events, and abnormal regulation of genes. Here, we demonstrate that the covalent binding of the vitamin biotin to lysine-12 in histone H4 (H4K12bio) and lysine-9 in histone H2A (H2AK9bio), mediated by holocarboxylase synthetase (HCS), is an epigenetic mechanism to repress retrotransposon transcription in human and mouse cell lines and in primary cells from a human supplementation study. Abundance of H4K12bio and H2AK9bio at intact retrotransposons and a solitary LTR depended on biotin supply and HCS activity and was inversely linked with the abundance of LTR transcripts. Knockdown of HCS in Drosophila melanogaster enhances retrotransposition in the germline. Importantly, we demonstrated that depletion of H4K12bio and H2AK9bio in biotin-deficient cells correlates with increased production of viral particles and transposition events and ultimately decreases chromosomal stability. Collectively, this study reveals a novel diet-dependent epigenetic mechanism that could affect cancer risk.


Asunto(s)
Elementos Transponibles de ADN , Histonas/química , Histonas/metabolismo , Adulto , Animales , Biotina/administración & dosificación , Biotinilación , Ligasas de Carbono-Nitrógeno/antagonistas & inhibidores , Ligasas de Carbono-Nitrógeno/genética , Ligasas de Carbono-Nitrógeno/metabolismo , Línea Celular , Aberraciones Cromosómicas , Citosina/metabolismo , Metilación de ADN , Suplementos Dietéticos , Drosophila melanogaster , Epigénesis Genética , Femenino , Humanos , Células Jurkat , Masculino , Virus del Tumor Mamario del Ratón/efectos de los fármacos , Virus del Tumor Mamario del Ratón/fisiología , Ratones , Persona de Mediana Edad , Proteínas Represoras/química , Proteínas Represoras/metabolismo , Secuencias Repetidas Terminales , Transcripción Genética/efectos de los fármacos , Ensamble de Virus/efectos de los fármacos , Adulto Joven
2.
Clin Cancer Res ; 11(19 Pt 1): 7033-41, 2005 Oct 01.
Artículo en Inglés | MEDLINE | ID: mdl-16203797

RESUMEN

PURPOSE: We have previously shown the reactivation of some methylation-silenced genes in cancer cells by (-)-epigallocatechin-3-gallate, the major polyphenol from green tea. To determine whether other polyphenolic compounds have similar activities, we studied the effects of soy isoflavones on DNA methylation. EXPERIMENTAL DESIGN: Enzyme assay was used to determine the inhibitory effect of genistein on DNA methyltransferase activity in nuclear extracts and purified recombinant enzyme. Methylation-specific PCR and quantitative real-time PCR were employed to examine the DNA methylation and gene expression status of retinoic acid receptor beta (RARbeta), p16INK4a, and O6-methylguanine methyltransferase (MGMT) in KYSE 510 esophageal squamous cell carcinoma cells treated with genistein alone or in combination with trichostatin, sulforaphane, or 2'-deoxy-5-aza-cytidine (5-aza-dCyd). RESULTS: Genistein (2-20 micromol/L) reversed DNA hypermethylation and reactivated RARbeta, p16INK4a, and MGMT in KYSE 510 cells. Genistein also inhibited cell growth at these concentrations. Reversal of DNA hypermethylation and reactivation of RARbeta by genistein were also observed in KYSE 150 cells and prostate cancer LNCaP and PC3 cells. Genistein (20-50 micromol/L) dose-dependently inhibited DNA methyltransferase activity, showing substrate- and methyl donor-dependent inhibition. Biochanin A and daidzein were less effective in inhibiting DNA methyltransferase activity, in reactivating RARbeta, and in inhibiting cancer cell growth. In combination with trichostatin, sulforaphane, or 5-aza-dCyd, genistein enhanced reactivation of these genes and inhibition of cell growth. CONCLUSIONS: These results indicate that genistein and related soy isoflavones reactivate methylation-silenced genes, partially through a direct inhibition of DNA methyltransferase, which may contribute to the chemopreventive activity of dietary isoflavones.


Asunto(s)
Anticarcinógenos/farmacología , Antineoplásicos/farmacología , Carcinoma de Células Escamosas/tratamiento farmacológico , Inhibidor p16 de la Quinasa Dependiente de Ciclina/metabolismo , Metilación de ADN , Neoplasias Esofágicas/tratamiento farmacológico , Genisteína/farmacología , Glycine max/metabolismo , O(6)-Metilguanina-ADN Metiltransferasa/metabolismo , Receptores de Ácido Retinoico/metabolismo , Azacitidina/análogos & derivados , Azacitidina/farmacología , Carcinoma de Células Escamosas/metabolismo , Línea Celular Tumoral , Proliferación Celular , Decitabina , Relación Dosis-Respuesta a Droga , Neoplasias Esofágicas/metabolismo , Humanos , Ácidos Hidroxámicos/farmacología , Isoflavonas/química , Isoflavonas/farmacología , Isotiocianatos , ARN Mensajero/metabolismo , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Sulfitos/farmacología , Sulfóxidos , , Tiocianatos/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA