Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutr Res Rev ; 36(1): 60-68, 2023 06.
Artículo en Inglés | MEDLINE | ID: mdl-34526164

RESUMEN

The incidence of preterm birth (PTB), delivery before 37 completed weeks of gestation, is rising in most countries. Several recent small clinical trials of myo-inositol supplementation in pregnancy, which were primarily aimed at preventing gestational diabetes, have suggested an effect on reducing the incidence of PTB as a secondary outcome, highlighting the potential role of myo-inositol as a preventive agent. However, the underlying molecular mechanisms by which myo-inositol might be able to do so remain unknown; these may occur through directly influencing the onset and progress of labour, or by suppressing stimuli that trigger or promote labour. This paper presents hypotheses outlining the potential role of uteroplacental myo-inositol in human parturition and explains possible underlying molecular mechanisms by which myo-inositol might modulate the uteroplacental environment and inhibit preterm labour onset. We suggest that a physiological decline in uteroplacental inositol levels to a critical threshold with advancing gestation, in concert with an increasingly pro-inflammatory uteroplacental environment, permits spontaneous membrane rupture and labour onset. A higher uteroplacental inositol level, potentially promoted by maternal myo-inositol supplementation, might affect lipid metabolism, eicosanoid production and secretion of pro-inflammatory chemocytokines that overall dampen the pro-labour uteroplacental environment responsible for labour onset and progress, thus reducing the risk of PTB. Understanding how and when inositol may act to reduce PTB risk would facilitate the design of future clinical trials of maternal myo-inositol supplementation and definitively address the efficacy of myo-inositol prophylaxis against PTB.


Asunto(s)
Diabetes Gestacional , Rotura Prematura de Membranas Fetales , Nacimiento Prematuro , Embarazo , Femenino , Recién Nacido , Humanos , Nacimiento Prematuro/prevención & control , Nacimiento Prematuro/tratamiento farmacológico , Nacimiento Prematuro/epidemiología , Inositol/farmacología , Inositol/uso terapéutico , Diabetes Gestacional/tratamiento farmacológico , Diabetes Gestacional/prevención & control , Rotura Prematura de Membranas Fetales/tratamiento farmacológico
2.
Int J Obes (Lond) ; 45(1): 247-257, 2021 01.
Artículo en Inglés | MEDLINE | ID: mdl-32433604

RESUMEN

BACKGROUND/OBJECTIVES: Maternal glycaemia promotes fetal adiposity. Inositol, an insulin sensitizer, has been trialled for gestational diabetes prevention. The placenta has been implicated in how maternal hyperglycaemia generates fetal pathophysiology, but no studies have examined whether placental inositol biology is altered with maternal hyperglycaemia, nor whether such alterations impact fetal physiology. We aimed to investigate whether the effects of maternal glycaemia on offspring birthweight and adiposity at birth differed across placental inositol levels. METHODS: Using longitudinal data from the Growing Up in Singapore Towards healthy Outcomes cohort, maternal fasting glucose (FPG) and 2-hour plasma glucose (2hPG) were obtained in pregnant women by a 75-g oral glucose tolerance test around 26 weeks' gestation. Relative placental inositol was quantified by liquid chromatography-mass spectrometry. Primary outcomes were birthweight (n = 884) and abdominal adipose tissue (AAT) volumes measured by neonatal MRI scanning in a subset (n = 262) of term singleton pregnancies. Multiple linear regression analyses were performed. RESULTS: Placental inositol was lower in those with higher 2hPG, no exposure to tobacco smoke antenatally, with vaginal delivery and shorter gestation. Positive associations of FPG with birthweight (adjusted ß [95% CI] 164.8 g [109.1, 220.5]) and AAT (17.3 ml [11.9, 22.6] per mmol glucose) were observed, with significant interactions between inositol tertiles and FPG in relation to these outcomes (p < 0.05). Stratification by inositol tertiles showed that each mmol/L increase in FPG was associated with increased birthweight and AAT volume among cases within the lowest (birthweight = 174.2 g [81.2, 267.2], AAT = 21.0 ml [13.1, 28.8]) and middle inositol tertiles (birthweight = 202.0 g [103.8, 300.1], AAT = 19.7 ml [9.7, 29.7]). However, no significant association was found among cases within the highest tertile (birthweight = 81.0 g [-21.2, 183.2], AAT = 0.8 ml [-8.4, 10.0]). CONCLUSIONS: High placental inositol may protect the fetus from the pro-adipogenic effects of maternal glycaemia. Studies are warranted to investigate whether prenatal inositol supplementation can increase placental inositol and reduce fetal adiposity.


Asunto(s)
Adiposidad/fisiología , Diabetes Gestacional/epidemiología , Inositol/análisis , Placenta/química , Adulto , Peso al Nacer/fisiología , Glucemia/análisis , Femenino , Humanos , Recién Nacido , Estudios Longitudinales , Masculino , Embarazo , Adulto Joven
3.
J Clin Endocrinol Metab ; 106(2): e875-e890, 2021 01 23.
Artículo en Inglés | MEDLINE | ID: mdl-33165596

RESUMEN

CONTEXT: Perturbed inositol physiology in insulin-resistant conditions has led to proposals of inositol supplementation for gestational diabetes (GDM) prevention, but placental inositol biology is poorly understood. OBJECTIVE: Investigate associations of maternal glycemia with placental inositol content, determine glucose effects on placental expression of inositol enzymes and transporters, and examine relations with birthweight. DESIGN AND PARTICIPANTS: Case-control study of placentae from term singleton pregnancies (GDM n = 24, non-GDM n = 26), and culture of another 9 placentae in different concentrations of glucose and myo-inositol for 48 hours. MAIN OUTCOME MEASURES: Placental inositol was quantified by the Megazyme assay. Relative expression of enzymes involved in myo-inositol metabolism and plasma membrane inositol transport was determined by quantitative RT-PCR and immunoblotting. Linear regression analyses were adjusted for maternal age, body mass index, ethnicity, gestational age, and sex. RESULTS: Placental inositol content was 17% lower in GDM compared with non-GDM. Higher maternal mid-gestation glycemia were associated with lower placental inositol. Increasing fasting glycemia was associated with lower protein levels of the myo-inositol synthesis enzyme, IMPA1, and the inositol transporters, SLC5A11 and SLC2A13, the expression of which also correlated with placental inositol content. In vitro, higher glucose concentrations reduced IMPA1 and SLC5A11 mRNA expression. Increasing fasting glycemia positively associated with customized birthweight percentile as expected in cases with low placental inositol, but this association was attenuated with high placental inositol. CONCLUSION: Glycemia-induced dysregulation of placental inositol synthesis and transport may be implicated in reduced placental inositol content in GDM, and this may in turn be permissive to accelerated fetal growth.


Asunto(s)
Diabetes Gestacional/metabolismo , Glucosa/farmacología , Inositol/metabolismo , Monoéster Fosfórico Hidrolasas/genética , Placenta/metabolismo , Adulto , Glucemia/fisiología , Estudios de Casos y Controles , Células Cultivadas , Diabetes Gestacional/sangre , Diabetes Gestacional/genética , Regulación hacia Abajo , Femenino , Regulación de la Expresión Génica/efectos de los fármacos , Glucosa/metabolismo , Proteínas Facilitadoras del Transporte de la Glucosa/efectos de los fármacos , Proteínas Facilitadoras del Transporte de la Glucosa/genética , Proteínas Facilitadoras del Transporte de la Glucosa/metabolismo , Humanos , Recién Nacido , Masculino , Monoéster Fosfórico Hidrolasas/efectos de los fármacos , Monoéster Fosfórico Hidrolasas/metabolismo , Placenta/patología , Embarazo , Transducción de Señal/efectos de los fármacos , Transducción de Señal/genética , Proteínas de Transporte de Sodio-Glucosa/efectos de los fármacos , Proteínas de Transporte de Sodio-Glucosa/genética , Proteínas de Transporte de Sodio-Glucosa/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA