Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Indian J Microbiol ; 63(4): 596-603, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-38031615

RESUMEN

Endophytic fungi are known as an alternative promising source of anticancer drug, paclitaxel, however fungi inhabiting in medicinal plant Podocarpus pilgeri and their paclitaxel production have not been reported to date. In the present study, a total of 15 culturable fungi classified into 5 genera, were successfully recovered from P. pilgeri collected in Vietnam. Screening fungal dichloromethane extracts for anticancer activity revealed that only PQF9 extract displayed potent inhibitory effects on A549 and MCF7 cancer cell lines with IC50 values of 33.9 ± 2.3 µg/mL and 43.5 ± 1.7 µg/mL, respectively. Through PCR-based molecular screening, the isolate PQF9 was found to possess 3 key genes involved in paclitaxel biosynthesis. Importantly, high-performance liquid chromatography quantification showed that fungal isolate PQF9 was able to produce 18.2 µg/L paclitaxel. The paclitaxel-producing fungus was identified as Fusarium solani PQF9 based on morphological and molecular phylogenetic analysis. Intensive investigations by chromatographic methods and spectroscopic analyses confirmed the presence of paclitaxel along with tyrosol and uracil. The pure paclitaxel had an IC50 value of 80.8 ± 9.4 and 67.9 ± 7.0 nM by using cell viability assay on A549 lung and MCF7 breast cancer cells. In addition, tyrosol exhibited strong antioxidant activity by scavenging 2, 2-diphenyl-picrylhydrazyl (DPPH) (IC50 5.1 ± 0.2 mM) and hydroxyl radical (IC50 3.6 ± 0.1 mM). In contrast, no biological activity was observed for uracil. Thus, the paclitaxel-producing fungus F. solani PQF9 could serve as a new material for large-scale production and deciphering paclitaxel biosynthesis. Supplementary Information: The online version contains supplementary material available at 10.1007/s12088-023-01119-z.

2.
Sci Rep ; 11(1): 11731, 2021 06 03.
Artículo en Inglés | MEDLINE | ID: mdl-34083611

RESUMEN

Adrinandra megaphylla Hu is a medicinal plant belonging to the Adrinandra genus, which is well-known for its potential health benefits due to its bioactive compounds. This study aimed to assemble and annotate the chloroplast genome of A. megaphylla as well as compare it with previously published cp genomes within the Adrinandra genus. The chloroplast genome was reconstructed using de novo and reference-based assembly of paired-end reads generated by long-read sequencing of total genomic DNA. The size of the chloroplast genome was 156,298 bp, comprised a large single-copy (LSC) region of 85,688 bp, a small single-copy (SSC) region of 18,424 bp, and a pair of inverted repeats (IRa and IRb) of 26,093 bp each; and a total of 51 SSRs and 48 repeat structures were detected. The chloroplast genome includes a total of 131 functional genes, containing 86 protein-coding genes, 37 transfer RNA genes, and 8 ribosomal RNA genes. The A. megaphylla chloroplast genome indicated that gene content and structure are highly conserved. The phylogenetic reconstruction using complete cp sequences, matK and trnL genes from Pentaphylacaceae species exhibited a genetic relationship. Among them, matK sequence is a better candidate for phylogenetic resolution. This study is the first report for the chloroplast genome of the A. megaphylla.


Asunto(s)
Ericales/clasificación , Ericales/genética , Genoma del Cloroplasto , Genómica , Plantas Medicinales/clasificación , Plantas Medicinales/genética , Codón , Biología Computacional/métodos , Genómica/métodos , Anotación de Secuencia Molecular , Estructura Molecular , Sistemas de Lectura Abierta , Filogenia , Secuencias Repetitivas de Ácidos Nucleicos , Secuenciación Completa del Genoma
3.
Braz J Microbiol ; 52(3): 1215-1224, 2021 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-33934292

RESUMEN

To date, endophytic actinomycetes have been well-documented as great producers of novel antibiotics and important pharmaceutical leads. The present study aimed to evaluate potent bioactivities of metabolites synthesized by the strain LCP18 residing in the Vietnamese medicinal plant Litsea cubeba (Lour.) Pers towards human pathogenic bacteria and human cancer cell lines. Endophytic actinomycete strain LCP18 showed considerable inhibition against seven bacterial pathogens and three human tumor cell lines and was identified as species Streptomyces variabilis. Strain S. variabilis LCP18 was phenotypically resistant to fosfomycin, trimethoprim-sulfamethoxazole, dalacin, cefoxitin, rifampicin, and fusidic acid and harbored the two antibiotic biosynthetic genes such as PKS-II and NRPS. Further purification and structural elucidation of metabolites from the LCP18 extract revealed five plant-derived bioactive compounds including isopcrunetin, genistein, daidzein, syringic acid, and daucosterol. Among those, isoprunetin, genistein, and daidzein exhibited antibacterial activity against Salmonella typhimurium ATCC 14,028 and methicillin-resistant Staphylococcus epidermidis ATCC 35,984 with the MIC values ranging from 16 to 128 µg/ml. These plant-derived compounds also exhibited cytotoxic effects against human lung cancer cell line A549 with IC50 values of less than 46 µM. These findings indicated that endophytic S. variabilis LCP18 can be an alternative producer of plant-derived compounds which significantly show potential applications in combating bacterial infections and inhibition against lung cancer cell lines.


Asunto(s)
Antibacterianos , Litsea , Fitoquímicos/farmacología , Streptomyces , Células A549 , Antibacterianos/farmacología , Línea Celular Tumoral , Humanos , Litsea/microbiología , Neoplasias Pulmonares/tratamiento farmacológico , Extractos Vegetales/química , Streptomyces/química , Streptomyces/genética
4.
J Gen Appl Microbiol ; 66(1): 24-31, 2020 Apr 13.
Artículo en Inglés | MEDLINE | ID: mdl-31378748

RESUMEN

Endophytic microbes associated with medicinal plants are considered to be potential producers of various bioactive secondary metabolites. The present study investigated the distribution, antimicrobial activity and genetic features of endophytic actinomycetes isolated from the medicinal plant Cinnamomum cassia Presl collected in Hoa Binh province of northern Vietnam. Based on phenotypic characteristics, 111 actinomycetes were isolated from roots, stems and leaves of the host plants by using nine selective media. The isolated actinomycetes were mainly recovered from stems (n = 67; 60.4%), followed by roots (n = 29; 26.1%) and leaves (n = 15; 13.5%). The isolates were accordingly assigned into 5 color categories of aerial mycelium, of which gray is the most dominant (n = 42; 37.8%), followed by white (n = 33; 29.7%), yellow (n = 25; 22,5%), red (n = 8; 7.2%) and green (n = 3; 2.7%). Of the total endophytic actinomycetes tested, 38 strains (occupying 34.2%) showed antimicrobial activity against at least one of nine tested microbes and, among them, 26 actinomycetes (68.4%) revealed anthracycline-like antibiotics production. Analysis of 16S rRNA gene sequences deposited on GenBank (NCBI) of the antibiotic-producing actinomycetes identified 3 distinct genera, including Streptomyces, Microbacterium, and Nocardia, among which Streptomyces genus was the most dominant and represented 25 different species. Further genetic investigation of the antibiotic-producing actinomycetes found that 28 (73.7%) and 11 (28.9%) strains possessed genes encoding polyketide synthase (pks) and nonribosomal peptide synthetase (nrps), respectively. The findings in the present study highlighted endophytic actinomycetes from C. cassia Presl which possessed broad-spectrum bioactivities with the potential for applications in the agricultural and pharmaceutical sectors.


Asunto(s)
Actinobacteria/química , Actinobacteria/clasificación , Antibiosis , Cinnamomum aromaticum/microbiología , Actinobacteria/aislamiento & purificación , Endófitos/química , Endófitos/clasificación , Endófitos/aislamiento & purificación , Péptido Sintasas/genética , Filogenia , Plantas Medicinales/microbiología , Sintasas Poliquetidas/genética , ARN Ribosómico 16S/genética , Metabolismo Secundario , Análisis de Secuencia de ADN , Vietnam
5.
Antibiotics (Basel) ; 8(4)2019 Oct 28.
Artículo en Inglés | MEDLINE | ID: mdl-31661781

RESUMEN

The present study aimed to evaluate the synergistic effects of the crude ethyl acetate extract (CEAE) from endophytic actinomycete MPT42 and essential oil (EO) of the same host plant Litsea cubeba. The isolate MPT42, exhibiting broad-spectrum antimicrobial activities and harboring all three antibiotic-related biosynthetic genes pks-I, pks-II, and nrps, was identified as Streptomycete griseorubens based on an analysis of the morphology, physiology, and 16S rDNA sequence. Minimum inhibitory concentrations (MICs) and the fractional inhibitory concentration index were used to estimate the synergistic effects of various combined ratios between CEAE or antibiotics (erythromycin, vancomycin) and EO toward 13 microbial strains including pathogens. L. cubeba fruit EO, showing the main chemical constituents of 36.0% citral, 29.6% carveol, and 20.5% limonene, revealed an active-low against tested microbes (MICs ≥ 600 µg/mL). The CEAE of S. griseorubens culture exhibited moderate-strong antimicrobial activities against microbes (MICs = 80-600 µg/mL). Analysis of the mechanism of action of EO on Escherichia coli ATCC 25922 found that bacterial cells were dead after 7 h of the EO treatment at 1 MIC (5.5 mg/mL), where 62% cells were permeabilized after 2 h and 3% of them were filament (length ≥ 6 µm). Combinations of CEAE, erythromycin, or vancomycin with EO led to significant synergistic antimicrobial effects against microbes with 4-16 fold reduction in MIC values when compared to their single use. Interestingly, the vancomycin-EO combinations exhibited a strong synergistic effect against five Gram-negative bacterial species. This could assume that the synergy was possibly due to increasing the cell membrane permeability by the EO acting on the bacterial cells, which allows the uptake and diffusion of antimicrobial substances inside the cell easily. These findings in the present study therefore propose a possible alternative to combat the emergence of multidrug-resistant microbes in veterinary and clinics.

6.
Nat Prod Res ; 30(12): 1360-5, 2016 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-26165243

RESUMEN

One new ß-carboline alkaloid 7-methoxy-(9H-ß-carbolin-1-il)-(E)-1-propenoic acid (1) together with 9-methoxycanthin-6-one (2) and 9-hydroxycanthin-6-one (3) were isolated from the hairy-root cultures of Eurycoma longifolia. The effects of these compounds on lipopolysaccharide (LPS)-induced nitric oxide (NO) production in RAW264.7 cells were investigated. Compound 1 strongly inhibited the production of NO while 2 and 3 having weak or inactive effect. Consistently, compound 1 decreased the expression of cyclooxygenase-2 and inducible nitric oxide synthase.


Asunto(s)
Alcaloides/farmacología , Antiinflamatorios no Esteroideos/farmacología , Carbolinas/farmacología , Eurycoma/química , Alcaloides/aislamiento & purificación , Animales , Antiinflamatorios no Esteroideos/química , Carbolinas/aislamiento & purificación , Inhibidores de la Ciclooxigenasa 2/farmacología , Evaluación Preclínica de Medicamentos/métodos , Eurycoma/citología , Alcaloides Indólicos/aislamiento & purificación , Alcaloides Indólicos/farmacología , Lipopolisacáridos/farmacología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Ratones , Óxido Nítrico/metabolismo , Óxido Nítrico Sintasa de Tipo II/antagonistas & inhibidores , Óxido Nítrico Sintasa de Tipo II/metabolismo , Raíces de Plantas/química , Raíces de Plantas/citología , Plantas Medicinales/química , Plantas Medicinales/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA