Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Phytomedicine ; 100: 154061, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35364561

RESUMEN

BACKGROUND: Acute myeloid leukemia (AML) is a heterogeneous disease with poor overall survival characterized by various genetic changes. The continuous activation of oncogenic pathways leads to the development of drug resistance and limits current therapeutic efficacy. Therefore, a multi-targeting inhibitor may overcome drug resistance observed in AML treatment. Recently, groups of flavonoids, such as flavones and flavonols, have been shown to inhibit a variety of kinase activities, which provides potential opportunities for further anticancer applications. PURPOSE: In this study, we evaluated the anticancer effects of flavonoid compounds collected from our in-house library and investigated their potential anticancer mechanisms by targeting multiple kinases for inhibition in AML cells. METHODS: The cytotoxic effect of the compounds was detected by cell viability assays. The kinase inhibitory activity of the selected compound was detected by kinase-based and cell-based assays. The binding conformation and interactions were investigated by molecular docking analysis. Flow cytometry was used to evaluate the cell cycle distribution and cell apoptosis. The protein and gene expression were estimated by western blotting and qPCR, respectively. RESULTS: In this study, an O-methylated flavonol (compound 11) was found to possess remarkable cytotoxic activity against AML cells compared to treatment in other cancer cell lines. The compound was demonstrated to act against multiple kinases, which play critical roles in survival signaling in AML, including FLT3, MNK2, RSK, DYRK2 and JAK2 with IC50 values of 1 - 2 µM. Compared to our previous flavonoid compounds, which only showed inhibitions against MNKs or FLT3, compound 11 exhibited multiple kinase inhibitory abilities. Moreover, compound 11 showed effectiveness in inhibiting internal tandem duplications of FLT3 (FLT3-ITDs), which accounts for 25% of AML cases. The interactions between compound 11 and targeted kinases were investigated by molecular docking analysis. Mechanically, compound 11 caused dose-dependent accumulation of leukemic cells at the G0/G1 phase and followed by the cells undergoing apoptosis. CONCLUSION: O-methylated flavonol, compound 11, can target multiple kinases, which may provide potential opportunities for the development of novel therapeutics for drug-resistant AMLs. This work provides a good starting point for further compound optimization.


Asunto(s)
Antineoplásicos , Leucemia Mieloide Aguda , Antineoplásicos/farmacología , Apoptosis , Línea Celular Tumoral , Flavonoides/farmacología , Flavonoides/uso terapéutico , Flavonoles/farmacología , Flavonoles/uso terapéutico , Humanos , Leucemia Mieloide Aguda/tratamiento farmacológico , Leucemia Mieloide Aguda/metabolismo , Simulación del Acoplamiento Molecular , Mutación , Inhibidores de Proteínas Quinasas/farmacología , Inhibidores de Proteínas Quinasas/uso terapéutico , Tirosina Quinasa 3 Similar a fms/genética , Tirosina Quinasa 3 Similar a fms/farmacología , Tirosina Quinasa 3 Similar a fms/uso terapéutico
2.
Molecules ; 25(24)2020 Dec 16.
Artículo en Inglés | MEDLINE | ID: mdl-33339319

RESUMEN

Chalcones are responsible for biological activity throughout fruits, vegetables, and medicinal plants in preventing and treating a variety of inflammation-related diseases. However, their structure-activity relationship (SAR) in inhibiting inflammasome activation has not been explored. We synthesized numerous chalcones and determined their SAR on lipopolysaccharide (LPS)-primed ATP-induced NLRP3 inflammasome activation. 11Cha1 displayed good inhibitory activity on release reaction of caspase-1, IL-1ß, and IL-18. It significantly inhibited LPS-induced phosphorylation and proteolytic degradation of IĸB-α and nuclear translocation of NF-ĸB, but had little effect on mitogen-activated protein kinases (MAPKs) activities. Furthermore, 11Cha1 blocked LPS-induced up-regulation of NLRP3, pro-caspase-1, ASC, IL-18, and IL-1ß, indicating the suppression on priming step of inflammasome activation. ASC dimerization and oligomerization are considered to be direct evidence for inflammasome activation. 11Cha1 profoundly inhibited ATP-induced formation of ASC dimers, trimers, and oligomers, and the assembly of ASC, pro-caspase-1, and NLRP3 in inflammasome formation. Decrease of intracellular K+ levels is the common cellular activity elicited by all NLRP3 inflammasome activators. 11Cha1 substantially diminished ATP-mediated K+ efflux, confirming the anti-NLRP3 inflammasome activity of 11Cha1. In summary, the SAR of chalcone derivatives in anti-inflammasome activities was examined. Besides, 11Cha1 inhibited both priming and activation steps of NLRP3 inflammasome activation. It inhibited NF-ĸB activation and subsequently suppressed the up-regulation of NLRP3 inflammasome components including NLRP3, ASC, pro-caspase-1, pro-IL-18, and pro-IL-1ß. Next, 11Cha1 blocked ATP-mediated K+ efflux and suppressed the assembly and activation of NLRP3 inflammasome, leading to the inhibition of caspase-1 activation and proteolytic cleavage, maturation, and secretion of IL-1ß and IL-18.


Asunto(s)
Chalconas/farmacología , Inflamasomas/efectos de los fármacos , Proteína con Dominio Pirina 3 de la Familia NLR/metabolismo , Adenosina Trifosfato/farmacología , Caspasa 1/metabolismo , Línea Celular , Dimerización , Humanos , Inflamasomas/metabolismo , Interleucina-1beta/metabolismo , Lipopolisacáridos/farmacología , Macrófagos/citología , Macrófagos/efectos de los fármacos , Macrófagos/metabolismo , Inhibidor NF-kappaB alfa/metabolismo , FN-kappa B/metabolismo , Fosforilación/efectos de los fármacos , Piroptosis/efectos de los fármacos , Relación Estructura-Actividad
3.
Eur J Med Chem ; 192: 112193, 2020 Apr 15.
Artículo en Inglés | MEDLINE | ID: mdl-32151835

RESUMEN

Multitarget agents simultaneously trigger molecules in functionally complementary pathways, and are therefore considered to have potential in effectively treating Alzheimer's disease (AD), which has a complex pathogenetic mechanism. In this study, the HDAC inhibitor core is incorporated into the acetylcholine esterase (ACE) inhibitor acridine-derived moiety and resulted in compounds that exhibited higher class IIa HDAC (4, 5, 7, and 9)- and class IIb HDAC6-inhibiting activity when compared to the pan-HDAC inhibitor SAHA in clinical practice. One of these compounds, 11b, displayed greater selectivity toward HDAC6 than other isoform enzymes. In contrast, the activity of compound 6a was selective toward class IIa HDAC and HDAC6. These two compounds exhibited strong activity against Aß-aggregation as well as significantly disrupted Aß-oligomer. Additionally, 11b and 6a strongly inhibited AChE. These experimental findings demonstrate that compounds 11b and 6a are HDAC-Aß-aggregation-AChE inhibitors. Notably, they can enhance neurite outgrowth, but with no significant neurotoxicity. Further biological evaluation revealed the various cellular effects of multitarget compounds 11b and 6a, which have the potential to treat AD.


Asunto(s)
Acridinas/farmacología , Enfermedad de Alzheimer/tratamiento farmacológico , Inhibidores de Histona Desacetilasas/farmacología , Histona Desacetilasas/metabolismo , Acetilcolinesterasa/metabolismo , Acridinas/síntesis química , Acridinas/química , Enfermedad de Alzheimer/metabolismo , Péptidos beta-Amiloides/antagonistas & inhibidores , Péptidos beta-Amiloides/metabolismo , Animales , Supervivencia Celular/efectos de los fármacos , Inhibidores de la Colinesterasa/síntesis química , Inhibidores de la Colinesterasa/química , Inhibidores de la Colinesterasa/farmacología , Relación Dosis-Respuesta a Droga , Inhibidores de Histona Desacetilasas/síntesis química , Inhibidores de Histona Desacetilasas/química , Humanos , Ratones , Estructura Molecular , Fragmentos de Péptidos/antagonistas & inhibidores , Fragmentos de Péptidos/metabolismo , Agregado de Proteínas/efectos de los fármacos , Relación Estructura-Actividad , Células Tumorales Cultivadas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA