Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Cells ; 9(9)2020 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-32854321

RESUMEN

Glioblastoma multiforme (GBM), a common type of brain cancer, has a very poor prognosis. In general, viable GBM cells exhibit elevated phosphatidylserine (PS) on their membrane surface compared to healthy cells. We have developed a drug, saposin C-dioleoylphosphatidylserine (SapC-DOPS), that selectively targets cancer cells by honing in on this surface PS. To examine whether SapC-DOPS, a stable, blood-brain barrier-penetrable nanovesicle, could be an effective delivery system for precise targeted therapy of radiation, we iodinated several carbocyanine-based fluorescent reporters with either stable iodine (127I) or radioactive isotopes (125I and 131I). While all of the compounds, when incorporated into the SapC-DOPS delivery system, were taken up by human GBM cell lines, we chose the two that best accumulated in the cells (DiI (22,3) and DiD (16,16)). Pharmacokinetics were conducted with 125I-labeled compounds and indicated that DiI (22,3)-SapC-DOPS had a time to peak in the blood of 0.66 h and an elimination half-life of 8.4 h. These values were 4 h and 11.5 h, respectively, for DiD (16,16)-SapC-DOPS. Adult nude mice with GBM cells implanted in their brains were treated with 131I-DID (16,16)-SapC-DOPS. Mice receiving the radionuclide survived nearly 50% longer than the control groups. These data suggest a potential novel, personalized treatment for a devastating brain disease.


Asunto(s)
Terapia Biológica/métodos , Glioblastoma/radioterapia , Glioblastoma/terapia , Nanotecnología/métodos , Fosfatidilserinas/metabolismo , Animales , Humanos , Ratones , Ratones Desnudos
2.
J Vis Exp ; (87)2014 May 02.
Artículo en Inglés | MEDLINE | ID: mdl-24837630

RESUMEN

We describe a multi-angle rotational optical imaging (MAROI) system for in vivo monitoring of physiopathological processes labeled with a fluorescent marker. Mouse models (brain tumor and arthritis) were used to evaluate the usefulness of this method. Saposin C (SapC)-dioleoylphosphatidylserine (DOPS) nanovesicles tagged with CellVue Maroon (CVM) fluorophore were administered intravenously. Animals were then placed in the rotational holder (MARS) of the in vivo imaging system. Images were acquired in 10° steps over 380°. A rectangular region of interest (ROI) was placed across the full image width at the model disease site. Within the ROI, and for every image, mean fluorescence intensity was computed after background subtraction. In the mouse models studied, the labeled nanovesicles were taken up in both the orthotopic and transgenic brain tumors, and in the arthritic sites (toes and ankles). Curve analysis of the multi angle image ROIs determined the angle with the highest signal. Thus, the optimal angle for imaging each disease site was characterized. The MAROI method applied to imaging of fluorescent compounds is a noninvasive, economical, and precise tool for in vivo quantitative analysis of the disease states in the described mouse models.


Asunto(s)
Artritis/diagnóstico , Neoplasias Encefálicas/diagnóstico , Colorantes Fluorescentes/administración & dosificación , Nanoestructuras/administración & dosificación , Óptica y Fotónica/métodos , Fosfatidilserinas/administración & dosificación , Saposinas/administración & dosificación , Absorción , Animales , Artritis/metabolismo , Artritis/patología , Neoplasias Encefálicas/metabolismo , Neoplasias Encefálicas/patología , Femenino , Colorantes Fluorescentes/farmacocinética , Masculino , Ratones , Ratones Endogámicos C57BL , Ratones Endogámicos NOD , Ratones Desnudos , Ratones Transgénicos , Imagen Óptica , Óptica y Fotónica/instrumentación , Imagen de Cuerpo Entero
3.
PLoS One ; 7(3): e33966, 2012.
Artículo en Inglés | MEDLINE | ID: mdl-22470501

RESUMEN

Rheumatoid arthritis is a chronic inflammatory disease affecting approximately 1% of the population and is characterized by cartilage and bone destruction ultimately leading to loss of joint function. Early detection and intervention of disease provides the best hope for successful treatment and preservation of joint mobility and function. Reliable and non-invasive techniques that accurately measure arthritic disease onset and progression are lacking. We recently developed a novel agent, SapC-DOPS, which is composed of the membrane-associated lysosomal protein saposin C (SapC) incorporated into 1,2-dioleoyl-sn-glycero-3-phospho-L-serine (DOPS) lipid nanovesicles. SapC-DOPS has a high fusogenic affinity for phosphatidylserine-enriched microdomains on surfaces of target cell membranes. Incorporation of a far-red fluorophore, CellVue Maroon (CVM), into the nanovesicles allows for in vivo non-invasive visualization of the agent in targeted tissue. Given that phosphatidylserine is present only on the inner leaflet of healthy plasma membranes but is "flipped" to the outer leaflet upon cell damage, we hypothesized that SapC-DOPS would target tissue damage associated with inflammatory arthritis due to local surface-exposure of phosphatidylserine. Optical imaging with SapC-DOPS-CVM in two distinct models of arthritis, serum-transfer arthritis (e.g., K/BxN) and collagen-induced arthritis (CIA) revealed robust SapC-DOPS-CVM specific localization to arthritic paws and joints in live animals. Importantly, intensity of localized fluorescent signal correlated with macroscopic arthritic disease severity and increased with disease progression. Flow cytometry of cells extracted from arthritic joints demonstrated that SapC-DOPS-CVM localized to an average of 7-8% of total joint cells and primarily to CD11b+Gr-1+ cells. Results from the current studies strongly support the application of SapC-DOPS-CVM for advanced clinical and research applications including: detecting early arthritis onset, assessing disease progression real-time in live subjects, and providing novel information regarding cell types that may mediate arthritis progression within joints.


Asunto(s)
Artritis Experimental/diagnóstico , Nanoestructuras , Fosfatidilserinas/química , Saposinas , Animales , Artritis/diagnóstico , Artritis/patología , Artritis Experimental/patología , Antígenos CD11/metabolismo , Diagnóstico por Imagen , Modelos Animales de Enfermedad , Colorantes Fluorescentes/química , Articulaciones/patología , Masculino , Ratones , Ratones Endogámicos DBA , Nanoestructuras/química , Saposinas/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA