Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Fungi (Basel) ; 8(8)2022 Aug 22.
Artículo en Inglés | MEDLINE | ID: mdl-36012875

RESUMEN

Cordyceps militaris is an industrially important fungus, which is often used in Asia as traditional medicine. There has been a published genome-scale metabolic model (GSMM) of C. militaris useful for predicting its growth behaviors; however, lipid metabolism, which plays a vital role in cellular functions, remains incomplete in the GSMM of C. militaris. A comprehensive study on C. militaris was thus performed by enhancing GSMM through integrative analysis of metabolic footprint and transcriptome data. Through the enhanced GSMM of C. militaris (called iPC1469), it contained 1469 genes, 1904 metabolic reactions and 1229 metabolites. After model evaluation, in silico growth simulation results agreed well with the experimental data of the fungal growths on different carbon sources. Beyond the model-driven integrative data analysis, interestingly, we found key metabolic responses in alteration of lipid metabolism in C. militaris upon different carbon sources. The sphingoid bases (e.g., sphinganine, sphingosine, and phytosphingosine) and ceramide were statistically significant accumulated in the xylose culture when compared with other cultures; this study suggests that the sphingolipid biosynthetic capability in C. militaris was dependent on the carbon source assimilated for cell growth; this finding provides a comprehensive basis for the sphingolipid biosynthesis in C. militaris that can help to further redesign its metabolic control for medicinal and functional food applications.

2.
Molecules ; 26(19)2021 Sep 23.
Artículo en Inglés | MEDLINE | ID: mdl-34641308

RESUMEN

Colorectal cancer is one of the leading causes of cancer-related death in Thailand and many other countries. The standard practice for curing this cancer is surgery with an adjuvant chemotherapy treatment. However, the unfavorable side effects of chemotherapeutic drugs are undeniable. Recently, protein hydrolysates and anticancer peptides have become popular alternative options for colon cancer treatment. Therefore, we aimed to screen and select the anticancer peptide candidates from the in silico pepsin hydrolysate of a Cordyceps militaris (CM) proteome using machine-learning-based prediction servers for anticancer prediction, i.e., AntiCP, iACP, and MLACP. The selected CM-anticancer peptide candidates could be an alternative treatment or co-treatment agent for colorectal cancer, reducing the use of chemotherapeutic drugs. To ensure the anticancer properties, an in vitro assay was performed with "CM-biomimetic peptides" on the non-metastatic colon cancer cell line (HT-29). According to the 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay results from peptide candidate treatments at 0-400 µM, the IC50 doses of the CM-biomimetic peptide with no toxic and cancer-cell-penetrating ability, original C. militaris biomimetic peptide (C-ori), against the HT-29 cell line were 114.9 µM at 72 hours. The effects of C-ori compared to the doxorubicin, a conventional chemotherapeutic drug for colon cancer treatment, and the combination effects of both the CM-anticancer peptide and doxorubicin were observed. The results showed that C-ori increased the overall efficiency in the combination treatment with doxorubicin. According to the acridine orange/propidium iodine (AO/PI) staining assay, C-ori can induce apoptosis in HT-29 cells significantly, confirmed by chromatin condensation, membrane blebbing, apoptotic bodies, and late apoptosis which were observed under a fluorescence microscope.


Asunto(s)
Antineoplásicos Fitogénicos/farmacología , Cordyceps/química , Doxorrubicina/farmacología , Proteínas Fúngicas/química , Peptidomiméticos/farmacología , Antineoplásicos Fitogénicos/química , Proliferación Celular/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Neoplasias del Colon/tratamiento farmacológico , Neoplasias del Colon/metabolismo , Simulación por Computador , Sinergismo Farmacológico , Regulación Neoplásica de la Expresión Génica , Células HT29 , Humanos , Aprendizaje Automático , Peptidomiméticos/química , Transducción de Señal/efectos de los fármacos
3.
Braz. arch. biol. technol ; 63: e20180501, 2020. graf
Artículo en Inglés | LILACS | ID: biblio-1132211

RESUMEN

Abstract Mesenchymal stem cells and osteoblasts play important roles in bone formation. Achatina fulica mucus presented the property of osteoinduction. This study aimed to examine the effects of A. fulica mucus on human mesenchymal stem cell (hMSC) and human fetal osteoblastic cell line (HFOB) differentiation. The integrated effects of A. fulica mucus and polycaprolactone (PCL) on the differentiation of hMSCs were tested. The cell viability of hMSCs treated with A. fulica mucus was investigated by the MTT assay. The cell mineralization was observed by Alizarin Red S staining, the gene expression was investigated using RT-PCR, and the PI3K activation was studied using flow cytometry. The results indicated that A. fulica mucus induced osteogenic differentiation in hMSCs and HFOBs by upregulation of the osteogenic markers; osteopontin (OPN) and osteocalcin (OCN). The results of the Alizarin Red S staining indicated that A. fulica mucus supported mineralization in both hMSCs and HFOBs. The hMSCs cultured on PCL supplemented with A. fulica mucus showed significantly increased RUNX2 and OPN expressions. A. fulica mucus was observed to increase PI3K activation in hMSCs. The findings of this study suggested that A. fulica mucus and biomaterials could be applied together for use in bone regeneration in the future.


Asunto(s)
Humanos , Animales , Osteogénesis/fisiología , Regeneración Ósea , Células Madre Mesenquimatosas/citología , Moluscos/química , Moco/química , Pruebas de Toxicidad , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Citometría de Flujo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA