Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 16 de 16
Filtrar
1.
New Phytol ; 241(1): 154-165, 2024 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-37804058

RESUMEN

Potassium (K+ ) is the most abundant inorganic cation in plant cells, playing a critical role in various plant functions. However, the impacts of K on natural terrestrial ecosystems have been less studied compared with nitrogen (N) and phosphorus (P). Here, we present a global meta-analysis aimed at quantifying the response of aboveground production to K addition. This analysis is based on 144 field K fertilization experiments. We also investigate the influences of climate, soil properties, ecosystem types, and fertilizer regimes on the responses of aboveground production. We find that: K addition significantly increases aboveground production by 12.3% (95% CI: 7.4-17.5%), suggesting a widespread occurrence of K limitation across terrestrial ecosystems; K limitation is more prominent in regions with humid climates, acidic soils, or weathered soils; the effect size of K addition varies among climate zones/regions, and is influenced by multiple factors; and previous N : K and K : P thresholds utilized to detect K limitation in wetlands cannot be applied to other biomes. Our findings emphasize the role of K in limiting terrestrial productivity, which should be integrated into future terrestrial ecosystems models.


Asunto(s)
Ecosistema , Potasio , Nitrógeno , Clima , Suelo , Fósforo
2.
New Phytol ; 237(6): 2054-2068, 2023 03.
Artículo en Inglés | MEDLINE | ID: mdl-36226674

RESUMEN

Spatial redistribution of nutrients by atmospheric transport and deposition could theoretically act as a continental-scale mechanism which counteracts declines in soil fertility caused by nutrient lock-up in accumulating biomass in tropical forests in Central Africa. However, to what extent it affects carbon sinks in forests remains elusive. Here we use a terrestrial biosphere model to quantify the impact of changes in atmospheric nitrogen and phosphorus deposition on plant nutrition and biomass carbon sink at a typical lowland forest site in Central Africa. We find that the increase in nutrient deposition since the 1980s could have contributed to the carbon sink over the past four decades up to an extent which is similar to that from the combined effects of increasing atmospheric carbon dioxide and climate change. Furthermore, we find that the modelled carbon sink responds to changes in phosphorus deposition, but less so to nitrogen deposition. The pronounced response of ecosystem productivity to changes in nutrient deposition illustrates a potential mechanism that could control carbon sinks in Central Africa. Monitoring the quantity and quality of nutrient deposition is needed in this region, given the changes in nutrient deposition due to human land use.


Asunto(s)
Secuestro de Carbono , Ecosistema , Humanos , Árboles/fisiología , Fósforo , Bosques , Suelo , Nitrógeno , África Central , Clima Tropical
3.
Nat Commun ; 13(1): 5005, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008385

RESUMEN

Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements.


Asunto(s)
Bosques , Fósforo , Carbono , Fotosíntesis , Hojas de la Planta/fisiología , Árboles/fisiología
4.
New Phytol ; 233(1): 169-181, 2022 01.
Artículo en Inglés | MEDLINE | ID: mdl-34614196

RESUMEN

Consistent information on the current elemental composition of vegetation at global scale and the variables that determine it is lacking. To fill this gap, we gathered a total of 30 912 georeferenced records on woody plants foliar concentrations of nitrogen (N), phosphorus (P) and potassium (K) from published databases, and produced global maps of foliar N, P and K concentrations for woody plants using neural networks at a resolution of 1 km2 . We used data for climate, atmospheric deposition, soil and morphoclimatic groups to train the neural networks. Foliar N, P and K do not follow clear global latitudinal patterns but are consistent with the hypothesis of soil substrate age. We additionally built generalized linear mixed models to investigate the evolutionary history effect together with the effects of environmental effects. In this comparison, evolutionary history effects explained most of the variability in all cases (mostly > 60%). These results emphasize the determinant role of evolutionary history in foliar elemental composition, which should be incorporated in upcoming dynamic global vegetation models.


Asunto(s)
Ecosistema , Hojas de la Planta , Bosques , Nitrógeno/análisis , Fósforo , Hojas de la Planta/química , Suelo
5.
Glob Chang Biol ; 28(4): 1678-1689, 2022 02.
Artículo en Inglés | MEDLINE | ID: mdl-34787937

RESUMEN

Soil phosphorus (P) availability often limits plant productivity. Classical theories suggest that total P content declines at the temporal scale of pedogenesis, and ecosystems develop toward the efficient use of scarce P during succession. However, the trajectory of ecosystem P within shorter time scales of succession remains unclear. We analyzed changes to P pools at the early (I), middle (II), and late (III) stages of growth of plantation forests (PFs) and the successional stages of natural forests (NFs) at 1969 sites in China. We found significantly lower P contents at later growth stages compared to earlier ones in the PF (p < .05), but higher contents at late successional stages than in earlier stages in the NF (p < .05). Our results indicate that increasing P demand of natural vegetation during succession, may raise, retain, and accumulate P from deeper soil layers. In contrast, ecosystem P in PF was depleted by the more rapidly increasing demand outpacing the development of a P-efficient system. We advocate for more studies to illuminate the mechanisms for determining the divergent changes, which would improve forest management and avoid the vast degradation of PF ecosystems suffering from the ongoing depletion of P.


Asunto(s)
Ecosistema , Suelo , China , Bosques , Fósforo , Árboles
6.
Glob Chang Biol ; 27(22): 5989-6003, 2021 11.
Artículo en Inglés | MEDLINE | ID: mdl-34383341

RESUMEN

Soil phosphatase enzymes are produced by plant roots and microorganisms and play a key role in the cycling of phosphorus (P), an often-limiting element in terrestrial ecosystems. The production of these enzymes in soil is the most important biological strategy for acquiring phosphate ions from organic molecules. Previous works showed how soil potential phosphatase activity is mainly driven by climatic conditions and soil nitrogen (N) and carbon. Nonetheless, future trends of the activity of these enzymes under global change remain little known. We investigated the influence of some of the main drivers of change on soil phosphatase activity using a meta-analysis of results from 97 published studies. Our database included a compilation of N and P fertilization experiments, manipulation experiments with increased atmospheric CO2 concentration, warming, and drought, and studies comparing invaded and non-invaded ecosystems. Our results indicate that N fertilization leads to higher phosphatase activity, whereas P fertilization has the opposite effect. The rise of atmospheric CO2 levels or the arrival of invasive species also exhibits positive response ratios on the activity of soil phosphatases. However, the occurrence of recurrent drought episodes decreases the activity of soil phosphatases. Our analysis did not reveal statistically significant effects of warming on soil phosphatase activity. In general, soil enzymatic changes in the reviewed experiments depended on the initial nutrient and water status of the ecosystems. The observed patterns evidence that future soil phosphatase activity will not only depend on present-day soil conditions but also on potential compensations or amplifications among the different drivers of global change. The responses of soil phosphatases to the global change drivers reported in this study and the consideration of cost-benefit approaches based on the connection of the P and N cycle will be useful for a better estimation of phosphatase production in carbon (C)-N-P models.


Asunto(s)
Ecosistema , Suelo , Nitrógeno , Monoéster Fosfórico Hidrolasas , Fósforo
7.
Environ Sci Technol ; 54(22): 14761-14771, 2020 11 17.
Artículo en Inglés | MEDLINE | ID: mdl-33138381

RESUMEN

Phosphorus (P) losses from fertilized croplands to inland water bodies cause serious environmental problems. During wet years, high precipitation disproportionately contributes to P losses. We combine simulations of a gridded crop model and outputs from a number of hydrological and climate models to assess global impacts of changes in precipitation regimes on P losses during the 21st century. Under the baseline climate during 1991-2010, median P losses are 2.7 ± 0.5 kg P ha-1 year-1 over global croplands of four major crops, while during wet years, P losses are 3.6 ± 0.7 kg P ha-1 year-1. By the end of this century, P losses in wet years would reach 4.2 ± 1.0 (RCP2.6) and 4.7 ± 1.3 (RCP8.5) kg P ha-1 year-1 due to increases in high annual precipitation alone. The increases in P losses are the highest (up to 200%) in the arid regions of Middle East, Central Asia, and northern Africa. Consequently, in three quarters of the world's river basins, representing about 40% of total global runoff and home up to 7 billion people, P dilution capacity of freshwater could be exceeded due to P losses from croplands by the end of this century.


Asunto(s)
Agricultura , Fósforo , África del Norte , Productos Agrícolas , Humanos , Ríos
8.
Artículo en Inglés | MEDLINE | ID: mdl-33022999

RESUMEN

BACKGROUND: The quantity, quality, and type (e.g., animal and vegetable) of human food have been correlated with human health, although with some contradictory or neutral results. We aimed to shed light on this association by using the integrated data at country level. METHODS: We correlated elemental (nitrogen (N) and phosphorus (P)) compositions and stoichiometries (N:P ratios), molecular (proteins) and energetic traits (kilocalories) of food of animal (terrestrial or aquatic) and vegetable origin, and alcoholic beverages with cancer prevalence and mortality and life expectancy (LE) at birth at the country level. We used the official databases of United Nations (UN), Food and Agriculture Organization of the United Nations (FAO), Organization for Economic Co-operation and Development (OECD), World Bank, World Health Organization (WHO), U.S. Department of Agriculture, U.S. Department of Health, and Eurobarometer, while also considering other possibly involved variables such as income, mean age, or human development index of each country. RESULTS: The per capita intakes of N, P, protein, and total intake from terrestrial animals, and especially alcohol were significantly and positively associated with prevalence and mortality from total, colon, lung, breast, and prostate cancers. In contrast, high per capita intakes of vegetable N, P, N:P, protein, and total plant intake exhibited negative relationships with cancer prevalence and mortality. However, a high LE at birth, especially in underdeveloped countries was more strongly correlated with a higher intake of food, independent of its animal or vegetable origin, than with other variables, such as higher income or the human development index. CONCLUSIONS: Our analyses, thus, yielded four generally consistent conclusions. First, the excessive intake of terrestrial animal food, especially the levels of protein, N, and P, is associated with higher prevalence of cancer, whereas equivalent intake from vegetables is associated with lower prevalence. Second, no consistent relationship was found for food N:P ratio and cancer prevalence. Third, the consumption of alcoholic beverages correlates with prevalence and mortality by malignant neoplasms. Fourth, in underdeveloped countries, reducing famine has a greater positive impact on health and LE than a healthier diet.


Asunto(s)
Esperanza de Vida , Neoplasias , Verduras , Bebidas Alcohólicas , Animales , Dieta , Humanos , Masculino , Neoplasias/epidemiología , Nitrógeno/análisis , Fósforo/análisis
9.
Science ; 368(6497)2020 06 19.
Artículo en Inglés | MEDLINE | ID: mdl-32554569

RESUMEN

Forests have considerable potential to help mitigate human-caused climate change and provide society with many cobenefits. However, climate-driven risks may fundamentally compromise forest carbon sinks in the 21st century. Here, we synthesize the current understanding of climate-driven risks to forest stability from fire, drought, biotic agents, and other disturbances. We review how efforts to use forests as natural climate solutions presently consider and could more fully embrace current scientific knowledge to account for these climate-driven risks. Recent advances in vegetation physiology, disturbance ecology, mechanistic vegetation modeling, large-scale ecological observation networks, and remote sensing are improving current estimates and forecasts of the risks to forest stability. A more holistic understanding and quantification of such risks will help policy-makers and other stakeholders effectively use forests as natural climate solutions.


Asunto(s)
Cambio Climático , Bosques , Secuestro de Carbono , Sequías , Incendios , Formulación de Políticas
10.
Commun Biol ; 3(1): 125, 2020 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-32170162

RESUMEN

The drivers of global change, including increases in atmospheric CO2 concentrations, N and S deposition, and climate change, likely affect the nutritional status of forests. Here we show forest foliar concentrations of N, P, K, S and Mg decreased significantly in Europe by 5%, 11%, 8%, 6% and 7%, respectively during the last three decades. The decrease in nutritional status was especially large in Mediterranean and temperate forests. Increasing atmospheric CO2 concentration was well correlated with the decreases in N, P, K, Mg, S concentrations and the increase of N:P ratio. Regional analyses indicated that increases in some foliar nutrient concentrations such as N, S and Ca in northern Europe occurred associated with increasingly favourable conditions of mean annual precipitation and temperature. Crucial changes in forest health, structure, functioning and services, including negative feedbacks on C capture can be expected if these trends are not reversed.


Asunto(s)
Atmósfera/química , Dióxido de Carbono/análisis , Bosques , Magnesio/análisis , Nitrógeno/análisis , Fósforo/análisis , Potasio/análisis , Azufre/análisis , Árboles/química , Cambio Climático , Sequías , Europa (Continente) , Hojas de la Planta/química , Suelo/química , Temperatura
11.
Environ Pollut ; 258: 113728, 2020 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-31877468

RESUMEN

The emission and deposition of global atmospheric phosphorus (P) have long been considered unbalanced, and primary biogenic aerosol particles (PBAP) and phosphine (PH3) are considered to be the only atmospheric P sources from the ecosystem. In this work, we found and quantified volatile organic phosphorus (VOP) emissions from plants unaccounted for in previous studies. In a greenhouse in which lemons were cultivated, the atmospheric total phosphorus (TP) concentration of particulate matter (PM) was 41.8% higher than that in a greenhouse containing only soil, and the proportion of organic phosphorus (OP) in TP was doubled. 31P nuclear magnetic resonance tests (31P-NMR) of PM showed that phosphate monoesters were the main components contributed by plants in both the greenhouse and at an outside observation site. Atmospheric gaseous P was directly measured to be 1-2 orders of magnitude lower than P in PM but appeared to double during plant growing seasons relative to other months. Bag-sampling and gas chromatography mass spectrometry (GCMS) tests showed that the gaseous P emitted by plants in the greenhouse was triethyl phosphate. VOP might be an important component of atmospheric P that has been underestimated in previous studies.


Asunto(s)
Material Particulado/análisis , Fósforo/análisis , Plantas/metabolismo , Suelo/química
12.
Sci Rep ; 7(1): 17671, 2017 12 15.
Artículo en Inglés | MEDLINE | ID: mdl-29247185

RESUMEN

We analyzed mean height of men born in the 1960s, 1970s and 1980s in 80 countries. Both height and the change in height during the last decades were correlated with N and P intake, as well as the N:P intake ratio. Rich countries had higher per capita N and P intake than poor countries (on average 19.5 ± 0.3 versus 9.66 ± 0.18 kg N y-1 and 2.17 ± 0.04 versus 1.35 ± 0.02 kg P y-1), and also larger increases in per capita N intake (12.1 ± 2.0% vs. 7.0 ± 2.1%) and P intake (7.6 ± 1.0% vs 6.01 ± 0.7%), during the period 1961-2009. The increasing gap in height trends between rich and poor countries is associated with an increasing gap in nutrition, so a more varied diet with higher N, P, and N:P intake is a key factor to improve food intake quality in poor countries and thus shorten the gap with rich countries. More N and P are needed with the consequent requirements for a better management of the socioeconomic and environmental associated problems.


Asunto(s)
Estatura/fisiología , Ingestión de Energía/fisiología , Nitrógeno/metabolismo , Fósforo/metabolismo , Adulto , Humanos , Masculino , Persona de Mediana Edad , Estado Nutricional , Factores Socioeconómicos
13.
Glob Chang Biol ; 23(11): 4854-4872, 2017 11.
Artículo en Inglés | MEDLINE | ID: mdl-28513916

RESUMEN

Spatial patterns and temporal trends of nitrogen (N) and phosphorus (P) deposition are important for quantifying their impact on forest carbon (C) uptake. In a first step, we modeled historical and future change in the global distributions of the atmospheric deposition of N and P from the dry and wet deposition of aerosols and gases containing N and P. Future projections were compared between two scenarios with contrasting aerosol emissions. Modeled fields of N and P deposition and P concentration were evaluated using globally distributed in situ measurements. N deposition peaked around 1990 in European forests and around 2010 in East Asian forests, and both increased sevenfold relative to 1850. P deposition peaked around 2010 in South Asian forests and increased 3.5-fold relative to 1850. In a second step, we estimated the change in C storage in forests due to the fertilization by deposited N and P (∆Cν dep ), based on the retention of deposited nutrients, their allocation within plants, and C:N and C:P stoichiometry. ∆Cν dep for 1997-2013 was estimated to be 0.27 ± 0.13 Pg C year-1 from N and 0.054 ± 0.10 Pg C year-1 from P, contributing 9% and 2% of the terrestrial C sink, respectively. Sensitivity tests show that uncertainty of ∆Cν dep was larger from P than from N, mainly due to uncertainty in the fraction of deposited P that is fixed by soil. ∆CPdep was exceeded by ∆CNdep over 1960-2007 in a large area of East Asian and West European forests due to a faster growth in N deposition than P. Our results suggest a significant contribution of anthropogenic P deposition to C storage, and additional sources of N are needed to support C storage by P in some Asian tropical forests where the deposition rate increased even faster for P than for N.


Asunto(s)
Secuestro de Carbono , Bosques , Nitrógeno/metabolismo , Fósforo/metabolismo , Plantas/metabolismo , Modelos Biológicos , Estaciones del Año , Factores de Tiempo
14.
Glob Chang Biol ; 23(9): 3849-3856, 2017 09.
Artículo en Inglés | MEDLINE | ID: mdl-28407324

RESUMEN

Global change impacts on biogeochemical cycles have been widely studied, but our understanding of whether the responses of plant elemental composition to global change drivers differ between above- and belowground plant organs remains incomplete. We conducted a meta-analysis of 201 reports including 1,687 observations of studies that have analyzed simultaneously N and P concentrations changes in leaves and roots in the same plants in response to drought, elevated [CO2 ], and N and P fertilization around the world, and contrasted the results within those obtained with a general database (838 reports and 14,772 observations) that analyzed the changes in N and P concentrations in leaves and/or roots of plants submitted to the commented global change drivers. At global level, elevated [CO2 ] decreased N concentrations in leaves and roots and decreased N:P ratio in roots but no in leaves, but was not related to P concentration changes. However, the response differed among vegetation types. In temperate forests, elevated [CO2 ] was related with lower N concentrations in leaves but not in roots, whereas in crops, the contrary patterns were observed. Elevated [CO2 ] decreased N concentrations in leaves and roots in tundra plants, whereas not clear relationships were observed in temperate grasslands. However, when elevated [CO2 ] and N fertilization coincided, leaves had lower N concentrations, whereas root had higher N concentrations suggesting that more nutrients will be allocated to roots to improve uptake of the soil resources not directly provided by the global change drivers. N fertilization and drought increased foliar and root N concentrations while the effects on P concentrations were less clear. The changes in N and P allocation to leaves and root, especially those occurring in opposite direction between them have the capacity to differentially affect above- and belowground ecosystem functions, such as litter mineralization and above- and belowground food webs.


Asunto(s)
Dióxido de Carbono , Hojas de la Planta , Raíces de Plantas , Ecosistema , Cadena Alimentaria , Nitrógeno/metabolismo , Fósforo/metabolismo , Suelo
15.
Glob Chang Biol ; 20(4): 1278-88, 2014 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-24470387

RESUMEN

The impact of soil nutrient depletion on crop production has been known for decades, but robust assessments of the impact of increasingly unbalanced nitrogen (N) and phosphorus (P) application rates on crop production are lacking. Here, we use crop response functions based on 741 FAO maize crop trials and EPIC crop modeling across Africa to examine maize yield deficits resulting from unbalanced N : P applications under low, medium, and high input scenarios, for past (1975), current, and future N : P mass ratios of respectively, 1 : 0.29, 1 : 0.15, and 1 : 0.05. At low N inputs (10 kg ha(-1)), current yield deficits amount to 10% but will increase up to 27% under the assumed future N : P ratio, while at medium N inputs (50 kg N ha(-1)), future yield losses could amount to over 40%. The EPIC crop model was then used to simulate maize yields across Africa. The model results showed relative median future yield reductions at low N inputs of 40%, and 50% at medium and high inputs, albeit with large spatial variability. Dominant low-quality soils such as Ferralsols, which are strongly adsorbing P, and Arenosols with a low nutrient retention capacity, are associated with a strong yield decline, although Arenosols show very variable crop yield losses at low inputs. Optimal N : P ratios, i.e. those where the lowest amount of applied P produces the highest yield (given N input) where calculated with EPIC to be as low as 1 : 0.5. Finally, we estimated the additional P required given current N inputs, and given N inputs that would allow Africa to close yield gaps (ca. 70%). At current N inputs, P consumption would have to increase 2.3-fold to be optimal, and to increase 11.7-fold to close yield gaps. The P demand to overcome these yield deficits would provide a significant additional pressure on current global extraction of P resources.


Asunto(s)
Productos Agrícolas/crecimiento & desarrollo , Nitrógeno , Fósforo , Suelo/química , África , Fertilizantes , Modelos Teóricos , Nitrógeno/análisis , Nitrógeno/farmacología , Fósforo/análisis , Fósforo/farmacología , Zea mays/efectos de los fármacos , Zea mays/crecimiento & desarrollo
16.
Nat Commun ; 4: 2934, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24343268

RESUMEN

The availability of carbon from rising atmospheric carbon dioxide levels and of nitrogen from various human-induced inputs to ecosystems is continuously increasing; however, these increases are not paralleled by a similar increase in phosphorus inputs. The inexorable change in the stoichiometry of carbon and nitrogen relative to phosphorus has no equivalent in Earth's history. Here we report the profound and yet uncertain consequences of the human imprint on the phosphorus cycle and nitrogen:phosphorus stoichiometry for the structure, functioning and diversity of terrestrial and aquatic organisms and ecosystems. A mass balance approach is used to show that limited phosphorus and nitrogen availability are likely to jointly reduce future carbon storage by natural ecosystems during this century. Further, if phosphorus fertilizers cannot be made increasingly accessible, the crop yields projections of the Millennium Ecosystem Assessment imply an increase of the nutrient deficit in developing regions.


Asunto(s)
Ecosistema , Nitrógeno , Fósforo , Carbono , Eutrofización , Humanos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA