Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nutrients ; 15(2)2023 Jan 16.
Artículo en Inglés | MEDLINE | ID: mdl-36678346

RESUMEN

BACKGROUND: The enhanced consumption of fructose as added sugar represents a major health concern. Due to the complexity and multiplicity of hypothalamic functions, we aim to point out early molecular alterations triggered by a sugar-rich diet throughout adolescence, and to verify their persistence until the young adulthood phase. METHODS: Thirty days old rats received a high-fructose or control diet for 3 weeks. At the end of the experimental period, treated animals were switched to the control diet for further 3 weeks, and then analyzed in comparison with those that were fed the control diet for the entire experimental period. RESULTS: Quantitative proteomics identified 19 differentially represented proteins, between control and fructose-fed groups, belonging to intermediate filament cytoskeleton, neurofilament, pore complex and mitochondrial respiratory chain complexes. Western blotting analysis confirmed proteomic data, evidencing a decreased abundance of mitochondrial respiratory complexes and voltage-dependent anion channel 1, the coregulator of mitochondrial biogenesis PGC-1α, and the protein subunit of neurofilaments α-internexin in fructose-fed rats. Diet-associated hypothalamic inflammation was also detected. Finally, the amount of brain-derived neurotrophic factor and its high-affinity receptor TrkB, as well as of synaptophysin, synaptotagmin, and post-synaptic protein PSD-95 was reduced in sugar-fed rats. Notably, deregulated levels of all proteins were fully rescued after switching to the control diet. CONCLUSIONS: A short-term fructose-rich diet in adolescent rats induces hypothalamic inflammation and highly affects mitochondrial and cytoskeletal compartments, as well as the level of specific markers of brain function; above-reported effects are reverted after switching animals to the control diet.


Asunto(s)
Fructosa , Proteómica , Ratas , Animales , Fructosa/efectos adversos , Fructosa/metabolismo , Dieta , Hipotálamo/metabolismo , Inflamación/metabolismo
2.
Mol Neurobiol ; 60(2): 1004-1020, 2023 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-36394711

RESUMEN

The detrimental impact of fructose, a widely used sweetener in industrial foods, was previously evidenced on various brain regions. Although adolescents are among the highest consumers of sweet foods, whether brain alterations induced by the sugar intake during this age persist until young adulthood or are rescued returning to a healthy diet remains largely unexplored. To shed light on this issue, just weaned rats were fed with a fructose-rich or control diet for 3 weeks. At the end of the treatment, fructose-fed rats underwent a control diet for a further 3 weeks until young adulthood phase and compared with animals that received from the beginning the healthy control diet. We focused on the consequences induced by the sugar on the main neurotrophins and neurotransmitters in the frontal cortex, as its maturation continues until late adolescence, thus being the last brain region to achieve a full maturity. We observed that fructose intake induces inflammation and oxidative stress, alteration of mitochondrial function, and changes of brain-derived neurotrophic factor (BDNF) and neurotrophin receptors, synaptic proteins, acetylcholine, dopamine, and glutamate levels, as well as increased formation of the glycation end-products Nε-carboxymethyllysine (CML) and Nε-carboxyethyllysine (CEL). Importantly, many of these alterations (BDNF, CML, CEL, acetylcholinesterase activity, dysregulation of neurotransmitters levels) persisted after switching to the control diet, thus pointing out to the adolescence as a critical phase, in which extreme attention should be devoted to limit an excessive consumption of sweet foods that can affect brain physiology also in the long term.


Asunto(s)
Acetilcolinesterasa , Factor Neurotrófico Derivado del Encéfalo , Animales , Ratas , Acetilcolinesterasa/metabolismo , Encéfalo/metabolismo , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Lóbulo Frontal/metabolismo , Fructosa/efectos adversos
3.
Mol Nutr Food Res ; 63(21): e1900243, 2019 11.
Artículo en Inglés | MEDLINE | ID: mdl-31398773

RESUMEN

Inflammation and oxidative stress play an important role in the pathogenesis of depressive disorders and nuclear erythroid related factor 2 (Nrf2), a regulator of RedOx homeostasis and inflammation, is a promising target for depression prevention/treatment. As fish oil (FO) and conjugated linoleic acid (CLA) are known Nrf2 inducers, their protective ability is comparatively evaluated in a murine model of depression (MRL/MpJ-Faslpr ). Oxidative stress, fatty acids content, and critical factors reflecting brain functioning-namely brain-derived neurotrophic factor (BDNF), synaptic markers, and cholinergic signaling-are preliminarily evaluated in the frontal cortex of 8-week (Young) and in 22-week old animals (Old), which are used as model of depression. These markers are measured in Old mice at the end of a 5-week pretreatment with FO or CLA (728 or 650 mg kg-1 , respectively). Old mice exhibit disrupted Redox homeostasis, compensatory Nrf2 hyperactivation, lower docosaheaxaenoic acid (DHA), and lower BDNF and synaptic function proteins compared to Young mice. FO and CLA treatment relieves almost all the pathophysiological hallmarks at a level comparable to Young mice. Presented data provide the first evidence for the comparable efficacy of FO or CLA supplementation in preventing depression signs in Old MRL/lpr mice, likely through their ability of improving Nrf2-mediated antioxidant defenses.


Asunto(s)
Encéfalo/efectos de los fármacos , Depresión/dietoterapia , Aceites de Pescado/farmacología , Ácidos Linoleicos Conjugados/farmacología , Factor 2 Relacionado con NF-E2/metabolismo , Envejecimiento , Animales , Antidepresivos/farmacología , Autoinmunidad/efectos de los fármacos , Biomarcadores/metabolismo , Encéfalo/metabolismo , Encéfalo/patología , Factor Neurotrófico Derivado del Encéfalo/metabolismo , Depresión/metabolismo , Depresión/patología , Suplementos Dietéticos , Ácidos Docosahexaenoicos/metabolismo , Elongasas de Ácidos Grasos/genética , Ácidos Grasos/metabolismo , Inflamación/dietoterapia , Hígado/efectos de los fármacos , Hígado/metabolismo , Masculino , Ratones Endogámicos MRL lpr , Estrés Oxidativo/efectos de los fármacos , Estearoil-CoA Desaturasa/genética , Factor de Necrosis Tumoral alfa/metabolismo
4.
J Lipid Res ; 59(1): 48-57, 2018 01.
Artículo en Inglés | MEDLINE | ID: mdl-29167408

RESUMEN

Oxidative stress is a key mediator of autoimmune/neurodegenerative disorders. The antioxidant/anti-inflammatory effect of a synthetic conjugated linoleic acid (CLA) mixture in MRL/MpJ-Fas lpr mice (MRL/lpr), an animal model of neuropsychiatric lupus, was previously associated with the improvement of nuclear factor-E2-related factor 2 (Nrf2) defenses in the spleen and liver. However, little is known about the neuroprotective ability of a CLA mixture. This study investigated the age-dependent progression of oxidative stress and the hyperactivation of redox-sensitive compensatory pathways (macroautophagy, Nrf2) in old/diseased MRL/lpr mice brains and examines the effect produced by dietary CLA supplementation. Disrupted redox homeostasis was evidenced in the blood, liver, and brain of 21- to 22-week-old MRL/lpr (Old) mice compared with 8- to 10-week-old MRL/lpr (Young) animals. This alteration was associated with significant hyperactivation of compensatory mechanisms (macroautophagy, Nrf2, and astrocyte activation) in the brains of Old mice. Five-week daily supplementation with CLA (650 mg/kg-1 body weight) of 16-week-old (CLA+Old) mice diminished all the pathological hallmarks at a level comparable to Young mice or healthy controls (BALB/c). Such data demonstrated that MRL/lpr mice can serve as a valuable model for the evaluation of the effectiveness of neuroprotective drugs. Notably, the preventive effect provided by CLA supplementation against age-associated neuronal damage and hyperactivation of compensatory mechanisms suggests that the activation of an adaptive response is at least in part accountable for its neuroprotective ability.


Asunto(s)
Modelos Animales de Enfermedad , Ácidos Linoleicos Conjugados/farmacología , Lupus Eritematoso Sistémico/prevención & control , Administración Oral , Factores de Edad , Animales , Femenino , Ácidos Linoleicos Conjugados/administración & dosificación , Masculino , Ratones , Ratones Endogámicos BALB C , Degeneración Nerviosa/metabolismo , Estrés Oxidativo/efectos de los fármacos
5.
J. physiol. biochem ; 68(4): 541-553, dic. 2012.
Artículo en Inglés | IBECS | ID: ibc-122302

RESUMEN

Apolipoprotein A-I and Apolipoprotein E promote different steps of reverse cholesterol transport, including lecithin-cholesterol acyltransferase stimulation. Our aim was to study the changes in the levels of Apolipoprotein A-I, Apolipoprotein E, and lecithin-cholesterol acyltransferase activity during atherosclerosis progression in rabbits. Quantitative echocardiographic parameters were analyzed in order to evaluate, for the first time, whether atherosclerosis progression in rabbit is associated to apolipoproteins changes and alteration of indices of cardiac function, such as systolic strain and strain rate of the left ventricle. Atherosclerosis was induced by feeding rabbits for 8 weeks with 2 % cholesterol diet. The HDL levels of cholesterol and cholesteryl esters were measured by HPLC. The lecithin-cholesterol acyltransferase activity was evaluated both ex vivo, as cholesteryl esters/cholesterol molar ratio, and in vitro. Apolipoproteins levels were analyzed by ELISA. The HDL levels of cholesterol and cholesteryl esters increased, during treatment, up to 3.7- and 2.5-fold, respectively, compared to control animals. The lecithin-cholesterol acyltransferase activity in vitro was halved after 4 weeks. During cholesterol treatment, Apolipoprotein A-I level significantly decreased, whereas Apolipoprotein E concentration markedly increased. The molar ratio Apolipoprotein E/Apolipoprotein A-I was negatively correlated with the enzyme activity, and positively correlated with both increases in the intima-media thickness of common carotid wall and cardiac dysfunction signs, such as systolic strain and strain rate of the left ventricle (AU)


Asunto(s)
Animales , Conejos , Ésteres del Colesterol/metabolismo , Aterosclerosis/fisiopatología , Apolipoproteínas A , Apolipoproteínas E , Progresión de la Enfermedad , Lecitinas/farmacocinética , Grosor Intima-Media Carotídeo , /fisiopatología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA