Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Med Food ; 27(2): 97-109, 2024 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-38381517

RESUMEN

The prevalence of diabetes has increased in last decades worldwide and is expected to continue to do so in the coming years, reaching alarming figures. Evidence have shown that patients with type 2 diabetes (T2D) have intestinal microbial dysbiosis. Moreover, several mechanisms link the microbiota with the appearance of insulin resistance and diabetes. Diet is a crucial factor related to changes in the composition, diversity, and activity of gut microbiota (GM). In this review, the current and future possibilities of nutrient-GM interactions as a strategy to alleviate T2D are discussed, as well as the mechanisms related to decreased low-grade inflammation and insulin resistance. A bibliographic search of clinical trials in Pubmed, Web of Science, and Scopus was carried out, using the terms "gut microbiota, diet and diabetes." The data analyzed in this review support the idea that dietary interventions targeting changes in the microbiota, including the use of prebiotics and probiotics, can improve glycemic parameters. However, these strategies should be individualized taking into account other internal and external factors. Advances in the understanding of the role of the microbiota in the development of metabolic diseases such as T2D, and its translation into a therapeutic approach for the management of diabetes, are necessary to allow a comprehensive approach.


Asunto(s)
Diabetes Mellitus Tipo 2 , Microbioma Gastrointestinal , Resistencia a la Insulina , Humanos , Diabetes Mellitus Tipo 2/prevención & control , Estado Nutricional , Inflamación
2.
Toxins (Basel) ; 15(9)2023 08 31.
Artículo en Inglés | MEDLINE | ID: mdl-37755964

RESUMEN

Beauvericin (BEA) is an emerging mycotoxin produced by some species of Fusarium genera that widely contaminates food and feed. Gentiana lutea is a protected medicinal plant known for its antioxidant and anti-inflammatory properties, which are attributed to its rich content of bioactive compounds. In order to evaluate the beneficial effects of G. lutea flower against BEA cytotoxicity, the aim of this study is to evaluate changes in protein expression after Jurkat cell exposure through a proteomics approach. To carry out the experiment, cells were exposed to intestinally digested G. lutea flower alone or in combination with the BEA standard (100 nM) over 7 days. Differentially expressed proteins were statistically evaluated (p < 0.05), revealing a total of 172 proteins with respect to the control in cells exposed to the BEA standard, 145 proteins for G. lutea alone, and 139 proteins when exposing the cells to the combined exposure. Bioinformatic analysis revealed processes implicated in mitochondria, ATP-related activity, and RNA binding. After careful analysis of differentially expressed proteins, it was evident that G. lutea attenuated, in most cases, the negative effects of BEA. Furthermore, it decreased the presence of major oncoproteins involved in the modulation of immune function.


Asunto(s)
Depsipéptidos , Gentiana , Gentiana/química , Gentiana/metabolismo , Antioxidantes/química , Depsipéptidos/toxicidad , Depsipéptidos/química , Flores/química , Flores/metabolismo
3.
Food Chem Toxicol ; 164: 113011, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35447289

RESUMEN

Food and feed are daily exposed to mycotoxin contamination which effects may be counteracted by functional compounds like carotenoids and fermented whey. Among mycotoxins, the most toxic and studied are aflatoxin B1 (AFB1) and ochratoxin A (OTA), which neurotoxicity is not well reported. Therefore, SH-SY5Y human neuroblastoma cells ongoing differentiation were exposed during 7 days to digested bread extracts contained pumpkin and fermented whey, individually and in combination, along with AFB1 and OTA and their combination, in order to evaluate their presumed effects on neuronal differentiation. The immunofluorescence analysis of ßIII-tubulin and dopamine markers pointed to OTA as the most damaging treatment for cell differentiation. Cell cycle analysis reported the highest significant differences for OTA-contained bread compared to the control in phase G0/G1. Lastly, RNA extraction was performed and gene expression was analyzed by qPCR. The selected genes were related to neuronal differentiation and cell cycle. The addition of functional ingredients in breads not only enhancing the expression of neuronal markers, but also induced an overall improvement of gene expression compromised by mycotoxins activity. These data confirm that in vitro neuronal differentiation may be impaired by AFB1 and OTA-exposure, which could be modulated by bioactive compounds naturally found in diet.


Asunto(s)
Cucurbita , Micotoxinas , Ocratoxinas , Aflatoxina B1/análisis , Aflatoxina B1/toxicidad , Contaminación de Alimentos/análisis , Humanos , Micotoxinas/toxicidad , Ocratoxinas/toxicidad , Extractos Vegetales/farmacología , Suero Lácteo/química , Proteína de Suero de Leche
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA