Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Inorg Chem ; 56(8): 4400-4412, 2017 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-28338318

RESUMEN

The Fe(II) coordination chemistry of a pyridinophane tren-derived scorpiand type ligand containing a pyridine ring in the pendant arm is explored by potentiometry, X-ray, NMR, and kinetics methods. Equilibrium studies in water show the formation of a stable [FeL]2+ complex that converts to monoprotonated and monohydroxylated species when the pH is changed. A [Fe(H-2L)]2+ complex containing an hexacoordinated dehydrogenated ligand has been isolated, and its crystal structure shows the formation of an imine bond involving the aliphatic nitrogen of the pendant arm. This complex is low spin Fe(II) both in the solid state and in solution, as revealed by the Fe-N bond lengths and by the NMR spectra, respectively. The formation rate of [Fe(H-2L)]2+ in aqueous solutions containing Fe2+ and L (1:1 molar ratio) is strongly dependent on the pH, the process being completed in times that range from months in acid solutions to hours in basic conditions. However, detailed kinetic studies show that those differences are caused, at least in part, by the effect of pH on the rate of formation of the unoxidized [FeL]2+ complex. In this sense, the protonation of the donor atoms in the pendant arm of the scorpiand ligand leads to the formation of protonated species resistant to oxidative dehydrogenation. Complementary studies in acetonitrile solution indicate that the initial stage in the oxidative dehydrogenation process is the oxidation of the starting complex to form a [FeL]3+ complex, which then undergoes disproportionation into [Fe(H-2L)]2+ and [FeL]2+. Experiments starting with Fe(III) have allowed us to determine that disproportionation occurs with first order kinetics both in water and acetonitrile solutions. However, whereas a significant acceleration is observed in water when the pH is increased, no effect of the addition of acid or base on the rate of disproportionation is observed in acetonitrile. Oxidative dehydrogenation of the Fe(II) complex formed in experiments starting with an Fe(III) salt is slower than that occurring when an Fe(II) salt is used, an observation that can be explained in terms of the formation of two different Fe(III) complexes, one of them with a structure unable to evolve directly toward the product of oxidative dehydrogenation.

2.
Eur J Med Chem ; 70: 189-98, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-24158012

RESUMEN

Chagas disease is today one of the most important neglected diseases for its upcoming expansion to non-endemic areas and has become a threat to blood recipients in many countries. In this study, the trypanocidal activity of ten derivatives of a family of aza-scorpiand like macrocycles is evaluated against Trypanosoma cruzi in vitro and in vivo murine model in which the acute and chronic phases of Chagas disease were analyzed. The compounds 4, 3 and 1 were found to be more active against the parasite and less toxic against Vero cells than the reference drug benznidazole, 4 being the most active compound, particularly in the chronic phase. While all these compounds showed a remarkable degree of inhibition of the Fe-SOD enzyme of the epimastigote forms of T. cruzi, they produced a negligible inhibition of human CuZn-SOD and Mn-SOD from Escherichia coli. The modifications observed by (1)H NMR and the amounts of excreted catabolites by the parasites after treatment suggested that the mechanism of action could be based on interactions of the side chains of the compounds with enzymes of the parasite metabolism. The ultrastructural alterations observed in treated epimastigote forms confirmed that the compounds having the highest activity are those causing the largest cell damage. A complementary histopathological analysis confirmed that the compounds tested were significantly less toxic to mammals than the reference drug.


Asunto(s)
Antiprotozoarios/farmacología , Compuestos Aza/farmacología , Modelos Animales de Enfermedad , Compuestos Macrocíclicos/farmacología , Trypanosoma cruzi/efectos de los fármacos , Animales , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Compuestos Aza/síntesis química , Compuestos Aza/química , Células Cultivadas , Chlorocebus aethiops , Enfermedad Crónica/prevención & control , Escherichia coli/enzimología , Femenino , Humanos , Ligandos , Compuestos Macrocíclicos/síntesis química , Compuestos Macrocíclicos/química , Ratones , Ratones Endogámicos BALB C , Estructura Molecular , Superóxido Dismutasa/antagonistas & inhibidores , Superóxido Dismutasa/metabolismo , Trypanosoma cruzi/enzimología , Trypanosoma cruzi/metabolismo , Células Vero
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA