Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Environ Sci Technol ; 56(12): 7448-7466, 2022 06 21.
Artículo en Inglés | MEDLINE | ID: mdl-35533312

RESUMEN

Substances of unknown or variable composition, complex reaction products, or biological materials (UVCBs) are over 70 000 "complex" chemical mixtures produced and used at significant levels worldwide. Due to their unknown or variable composition, applying chemical assessments originally developed for individual compounds to UVCBs is challenging, which impedes sound management of these substances. Across the analytical sciences, toxicology, cheminformatics, and regulatory practice, new approaches addressing specific aspects of UVCB assessment are being developed, albeit in a fragmented manner. This review attempts to convey the "big picture" of the state of the art in dealing with UVCBs by holistically examining UVCB characterization and chemical identity representation, as well as hazard, exposure, and risk assessment. Overall, information gaps on chemical identities underpin the fundamental challenges concerning UVCBs, and better reporting and substance characterization efforts are needed to support subsequent chemical assessments. To this end, an information level scheme for improved UVCB data collection and management within databases is proposed. The development of UVCB testing shows early progress, in line with three main methods: whole substance, known constituents, and fraction profiling. For toxicity assessment, one option is a whole-mixture testing approach. If the identities of (many) constituents are known, grouping, read across, and mixture toxicity modeling represent complementary approaches to overcome data gaps in toxicity assessment. This review highlights continued needs for concerted efforts from all stakeholders to ensure proper assessment and sound management of UVCBs.


Asunto(s)
Petróleo , Mezclas Complejas , Petróleo/toxicidad , Medición de Riesgo
2.
Metallomics ; 11(3): 696-706, 2019 03 20.
Artículo en Inglés | MEDLINE | ID: mdl-30839007

RESUMEN

One potential source of new antibacterials is through probing existing chemical libraries for copper-dependent inhibitors (CDIs), i.e., molecules with antibiotic activity only in the presence of copper. Recently, our group demonstrated that previously unknown staphylococcal CDIs were frequently present in a small pilot screen. Here, we report the outcome of a larger industrial anti-staphylococcal screen consisting of 40 771 compounds assayed in parallel, both in standard and in copper-supplemented media. Ultimately, 483 had confirmed copper-dependent IC50 values under 50 µM. Sphere-exclusion clustering revealed that these hits were largely dominated by sulfur-containing motifs, including benzimidazole-2-thiones, thiadiazines, thiazoline formamides, triazino-benzimidazoles, and pyridinyl thieno-pyrimidines. Structure-activity relationship analysis of the pyridinyl thieno-pyrimidines generated multiple improved CDIs, with activity likely dependent on ligand/ion coordination. Molecular fingerprint-based Bayesian classification models were built using Discovery Studio and Assay Central, a new platform for sharing and distributing cheminformatic models in a portable format, based on open-source tools. Finally, we used the latter model to evaluate a library of FDA-approved drugs for copper-dependent activity in silico. Two anti-helminths, albendazole and thiabendazole, scored highly and are known to coordinate copper ions, further validating the model's applicability.


Asunto(s)
Antibacterianos , Cobre , Ensayos Analíticos de Alto Rendimiento/métodos , Aprendizaje Automático , Staphylococcus aureus/efectos de los fármacos , Antibacterianos/química , Antibacterianos/farmacología , Teorema de Bayes , Cobre/química , Cobre/farmacología , Pruebas de Sensibilidad Microbiana/métodos , Bibliotecas de Moléculas Pequeñas
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA