Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Front Hum Neurosci ; 15: 647908, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-33841120

RESUMEN

In a Mental Imagery Brain-Computer Interface the user has to perform a specific mental task that generates electroencephalography (EEG) components, which can be translated in commands to control a BCI system. The development of a high-performance MI-BCI requires a long training, lasting several weeks or months, in order to improve the ability of the user to manage his/her mental tasks. This works aims to present the design of a MI-BCI combining mental imaginary and cognitive tasks for a severely motor impaired user, involved in the BCI race of the Cybathlon event, a competition of people with severe motor disability. In the BCI-race, the user becomes a pilot in a virtual race game against up to three other pilots, in which each pilot has to control his/her virtual car by his/her mental tasks. We present all the procedures followed to realize an effective MI-BCI, from the user's first contact with a BCI technology to actually controlling a video-game through her EEG. We defined a multi-stage user-centered training protocol in order to successfully control a BCI, even in a stressful situation, such as that of a competition. We put a specific focus on the human aspects that influenced the long training phase of the system and the participation to the competition.

2.
Hum Brain Mapp ; 42(4): 978-992, 2021 03.
Artículo en Inglés | MEDLINE | ID: mdl-33156569

RESUMEN

Signal-to-noise ratio (SNR) maps are a good way to visualize electroencephalography (EEG) and magnetoencephalography (MEG) sensitivity. SNR maps extend the knowledge about the modulation of EEG and MEG signals by source locations and orientations and can therefore help to better understand and interpret measured signals as well as source reconstruction results thereof. Our work has two main objectives. First, we investigated the accuracy and reliability of EEG and MEG finite element method (FEM)-based sensitivity maps for three different head models, namely an isotropic three and four-compartment and an anisotropic six-compartment head model. As a result, we found that ignoring the cerebrospinal fluid leads to an overestimation of EEG SNR values. Second, we examined and compared EEG and MEG SNR mappings for both cortical and subcortical sources and their modulation by source location and orientation. Our results for cortical sources show that EEG sensitivity is higher for radial and deep sources and MEG for tangential ones, which are the majority of sources. As to the subcortical sources, we found that deep sources with sufficient tangential source orientation are recordable by the MEG. Our work, which represents the first comprehensive study where cortical and subcortical sources are considered in highly detailed FEM-based EEG and MEG SNR mappings, sheds a new light on the sensitivity of EEG and MEG and might influence the decision of brain researchers or clinicians in their choice of the best modality for their experiment or diagnostics, respectively.


Asunto(s)
Amígdala del Cerebelo/fisiología , Cerebelo/fisiología , Corteza Cerebral/fisiología , Cuerpo Estriado/fisiología , Electroencefalografía/normas , Potenciales Evocados Somatosensoriales/fisiología , Magnetoencefalografía/normas , Tálamo/fisiología , Adulto , Electroencefalografía/métodos , Hipocampo/fisiología , Humanos , Imagen por Resonancia Magnética , Magnetoencefalografía/métodos , Reproducibilidad de los Resultados , Relación Señal-Ruido
3.
Biomed Eng Online ; 9: 45, 2010 Sep 06.
Artículo en Inglés | MEDLINE | ID: mdl-20819204

RESUMEN

BACKGROUND: Interpreting and controlling bioelectromagnetic phenomena require realistic physiological models and accurate numerical solvers. A semi-realistic model often used in practise is the piecewise constant conductivity model, for which only the interfaces have to be meshed. This simplified model makes it possible to use Boundary Element Methods. Unfortunately, most Boundary Element solutions are confronted with accuracy issues when the conductivity ratio between neighboring tissues is high, as for instance the scalp/skull conductivity ratio in electro-encephalography. To overcome this difficulty, we proposed a new method called the symmetric BEM, which is implemented in the OpenMEEG software. The aim of this paper is to present OpenMEEG, both from the theoretical and the practical point of view, and to compare its performances with other competing software packages. METHODS: We have run a benchmark study in the field of electro- and magneto-encephalography, in order to compare the accuracy of OpenMEEG with other freely distributed forward solvers. We considered spherical models, for which analytical solutions exist, and we designed randomized meshes to assess the variability of the accuracy. Two measures were used to characterize the accuracy. the Relative Difference Measure and the Magnitude ratio. The comparisons were run, either with a constant number of mesh nodes, or a constant number of unknowns across methods. Computing times were also compared. RESULTS: We observed more pronounced differences in accuracy in electroencephalography than in magnetoencephalography. The methods could be classified in three categories: the linear collocation methods, that run very fast but with low accuracy, the linear collocation methods with isolated skull approach for which the accuracy is improved, and OpenMEEG that clearly outperforms the others. As far as speed is concerned, OpenMEEG is on par with the other methods for a constant number of unknowns, and is hence faster for a prescribed accuracy level. CONCLUSIONS: This study clearly shows that OpenMEEG represents the state of the art for forward computations. Moreover, our software development strategies have made it handy to use and to integrate with other packages. The bioelectromagnetic research community should therefore be able to benefit from OpenMEEG with a limited development effort.


Asunto(s)
Fenómenos Electromagnéticos , Programas Informáticos , Benchmarking , Computadores , Impedancia Eléctrica , Electricidad , Electroencefalografía , Concesión de Licencias , Magnetismo , Magnetoencefalografía , Modelos Teóricos , Control de Calidad , Programas Informáticos/legislación & jurisprudencia , Programas Informáticos/normas , Factores de Tiempo , Tomografía
4.
Artículo en Inglés | MEDLINE | ID: mdl-18002305

RESUMEN

The aim is to investigate the activation conditions of the different nerves which control the bladder. The selective stimulation of the nerve fibers depends on electrode configuration and intensity of applied current. The goal of this study is to compute the electrical potential inside the nerve due to an applied boundary currents. A symmetrically cylindrical model, representing the geometry and electrical conductivity of a nerve surrounded by a connective tissue and a cuff is used. In the quasistatic approximation, the problem can be modeled by a Poisson equation with Neumann boundary conditions. A symmetric boundary integral formulation is discretized using mixed finite elements. We can thus compute an electrical potential distribution depending on the electrode configuration and the applied current inside a nerve. Our results show that the distribution of the electrical potential inside a nerve or a fascicle depends on the geometry of the electrode and the shape of the applied current.


Asunto(s)
Terapia por Estimulación Eléctrica , Electrofisiología/instrumentación , Electrofisiología/métodos , Tejido Nervioso/patología , Comunicación Celular , Simulación por Computador , Conductividad Eléctrica , Electrodos , Diseño de Equipo , Análisis de Elementos Finitos , Humanos , Modelos Estadísticos , Modelos Teóricos , Tejido Nervioso/metabolismo , Neuronas/metabolismo , Distribución de Poisson
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA