Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Chembiochem ; 21(10): 1433-1445, 2020 05 15.
Artículo en Inglés | MEDLINE | ID: mdl-31863526

RESUMEN

This work aimed to undertake the in situ conversion of the terminal amine groups of bacterial desferrioxamine (DFO) siderophores, including desferrioxamine B (DFOB), to azide groups to enable downstream click chemistry. Initial studies trialed a precursor-directed biosynthesis (PDB) approach. Supplementing Streptomyces pilosus culture with blunt-end azido/amine non-native substrates designed to replace 1,5-diaminopentane as the native diamine substrate in the terminal amine position of DFOB did not produce azido-DFOB. Addition of the diazo-transfer reagent imidazole-1-sulfonyl azide hydrogen sulfate to spent S. pilosus medium that had been cultured in the presence of 1,4-diaminobutane, as a viable native substrate to expand the suite of native DFO-type siderophores, successfully generated the cognate suite of azido-DFO analogues. CuI -mediated or strain-promoted CuI -free click chemistry reactions between this minimally processed mixture and the appropriate alkyne-bearing biotin reagents produced the cognate suite of 1,4-disubstituted triazole-linked DFO-biotin compounds as potential molecular probes, detected as FeIII -loaded species. The amine-to-azide transformation of amine-bearing natural products in complex mixtures by the direct addition of a diazo-transfer reagent to deliver functional click chemistry reagents adds to the toolbox for chemical proteomics, chemical biology, and drug discovery.


Asunto(s)
Aminas/química , Azidas/química , Química Clic/métodos , Deferoxamina/química , Sideróforos/química , Streptomyces/metabolismo
2.
Biometals ; 32(3): 395-408, 2019 06.
Artículo en Inglés | MEDLINE | ID: mdl-30701380

RESUMEN

Desferrioxamine B (DFOB) is a siderophore native to Streptomyces pilosus biosynthesised by the DesABCD enzyme cluster as a high affinity Fe(III) chelator. Although DFOB has a long clinical history for the treatment of chronic iron overload, limitations encourage the development of new analogues. This review describes a recent body of work that has used precursor-directed biosynthesis (PDB) to access new DFOB analogues. PDB exploits the native biosynthetic machinery of a producing organism in culture medium augmented with non-native substrates that compete against native substrates during metabolite assembly. The method allows access to analogues of natural products using benign methods, compared to multistep organic synthesis. The disadvantages of PDB are the production of metabolites in low yield and the need to purify complex mixtures. Streptomyces pilosus medium was supplemented with different types of non-native diamine substrates to compete against native 1,5-diaminopentane to generate DFOB analogues containing alkene bonds, fluorine atoms, ether or thioether functional groups, or a disulfide bond. All analogues retained function as Fe(III) chelators and have properties that could broaden the utility of DFOB. These PDB studies have also added knowledge to the understanding of DFOB biosynthesis.


Asunto(s)
Deferoxamina/metabolismo , Quelantes del Hierro/metabolismo , Streptomyces/química , Deferoxamina/análogos & derivados , Deferoxamina/química , Quelantes del Hierro/química , Estructura Molecular , Streptomyces/metabolismo
3.
Chem Commun (Camb) ; 54(70): 9813-9816, 2018 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-30106398

RESUMEN

An analogue of the bacterial siderophore desferrioxamine B (DFOB) containing a disulfide motif in the backbone was produced from Streptomyces pilosus cultures supplemented with cystamine. Cystamine competed against native 1,5-diaminopentane during assembly. DFOB-(SS)1[001] and its complexes with Fe(iii) or Ga(iii) were cleaved upon incubation with dithiothreitol. Compounds such as DFOB-(SS)1[001] and its thiol-containing cleavage products could expand antibiotic strategies and Au-S-based nanotechnologies.


Asunto(s)
Complejos de Coordinación/metabolismo , Deferoxamina/análogos & derivados , Deferoxamina/metabolismo , Disulfuros/metabolismo , Compuestos Férricos/metabolismo , Sideróforos/biosíntesis , Cadaverina/metabolismo , Cistamina/metabolismo , Galio/química , Hierro/química , Streptomyces/química
4.
Chembiochem ; 18(4): 368-373, 2017 02 16.
Artículo en Inglés | MEDLINE | ID: mdl-27943581

RESUMEN

A combinatorial pool of hydroxamic acid fragments as potential metalloprotein drug leads was generated from the enzymatic hydrolysis of the natural product desferrioxamine B (DFOB). DFOB is a metabolite produced by Streptomyces pilosus for iron acquisition, and can be selectively catabolised by Niveispirillum irakense to access carbon for growth. The supernatant of a DFOB-supplemented culture of N. irakense was analysed by LC-MS at intervals over 168 h. This identified a mixture of endo-hydroxamic acid fragments that contained reactive terminal groups. The supernatants from two cultures (at 48 h and 168 h) were reacted with 1,8-naphthalic anhydride in a microwave synthesiser to generate pools of scriptaid analogues, which were screened against ZnII -containing histone deacetylases (HDACs) and FeIII -containing 5-lipoxygenase (5-LO). Compound S2 showed relative potency against 5-LO (IC50 =59 µm; BWA4C, 17 µm); it was 28-fold more selective towards 5-LO than HDAC1. Compound S1 inhibited HDAC1 but not 5-LO. Enzyme-mediated reverse biosynthesis could yield new benefits from structurally complex natural products in drug design.


Asunto(s)
Productos Biológicos/química , Química Farmacéutica , Técnicas Químicas Combinatorias , Descubrimiento de Drogas/métodos , Cromatografía Liquida , Pruebas de Enzimas , Concentración 50 Inhibidora , Estructura Molecular , Espectrometría de Masa por Ionización de Electrospray
5.
J Inorg Biochem ; 162: 207-215, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-26723537

RESUMEN

Cultures of Shewanella putrefaciens grown in medium containing 10mM 1,4-diamino-2-butanone (DBO) as an inhibitor of ornithine decarboxylase and 10mM 1,5-diaminopentane (cadaverine) showed the simultaneous biosynthesis of the macrocyclic dihydroxamic acids: putrebactin (pbH2), avaroferrin (avH2) and bisucaberin (bsH2). The level of DBO did not completely repress the production of endogenous 1,4-diaminobutane (putrescine) as the native diamine substrate of pbH2. The relative concentration of pbH2:avH2:bsH2 was 1:2:1, which correlated with the substrate selection of putrescine:cadaverine in a ratio of 1:1. The macrocycles were characterised using LC-MS as free ligands and as 1:1 complexes with Fe(III) of the form [Fe(pb)]+, [Fe(av)]+ or [Fe(bs)]+, with labile ancillary ligands in six-coordinate complexes displaced during ESI-MS acquisition; or with Mo(VI) of the form [Mo(O)2(pb)], [Mo(O)2(av)] or [Mo(O)2(bs)]. Chromium(V) complexes of the form [CrO(pb)]+ were detected from solutions of Cr(VI) and pbH2 in DMF using X-band EPR spectroscopy. Supplementation of S. putrefaciens medium with DBO and 1,3-diaminopropane, 1,6-diaminohexane or 1,4-diamino-2(Z)-butene (Z-DBE) resulted only in the biosynthesis of pbH2. The work has identified a native system for the simultaneous biosynthesis of a suite of three macrocyclic dihydroxamic acid siderophores and highlights both the utility of precursor-directed biosynthesis for expanding the structural diversity of siderophores, and the breadth of their coordination chemistry.


Asunto(s)
Cromo/química , Hierro/química , Molibdeno/química , Péptidos Cíclicos/biosíntesis , Putrescina/análogos & derivados , Shewanella putrefaciens/metabolismo , Proteínas Bacterianas/antagonistas & inhibidores , Proteínas Bacterianas/genética , Proteínas Bacterianas/metabolismo , Cadaverina/metabolismo , Complejos de Coordinación/química , Diaminas/farmacología , Espectroscopía de Resonancia por Spin del Electrón , Expresión Génica , Ácidos Hidroxámicos/antagonistas & inhibidores , Ornitina Descarboxilasa/genética , Ornitina Descarboxilasa/metabolismo , Inhibidores de la Ornitina Descarboxilasa/farmacología , Péptidos Cíclicos/antagonistas & inhibidores , Putrescina/antagonistas & inhibidores , Putrescina/biosíntesis , Putrescina/farmacología , Shewanella putrefaciens/efectos de los fármacos , Shewanella putrefaciens/genética , Succinatos/antagonistas & inhibidores
6.
J Proteome Res ; 11(2): 776-95, 2012 Feb 03.
Artículo en Inglés | MEDLINE | ID: mdl-22054071

RESUMEN

Pseudomonas aeruginosa is an opportunistic pathogen that is the major cause of morbidity and mortality in patients with cystic fibrosis (CF). While most CF patients are thought to acquire P. aeruginosa from the environment, person-to-person transmissible strains have been identified in CF clinics worldwide, and the molecular basis for transmissibility remains poorly understood. We undertook a complementary proteomics approach to characterize protein profiles from a transmissible, acute isolate of the Australian epidemic strain 1 (AES-1R), the virulent burns/wound isolate PA14, and the poorly virulent, laboratory-associated strain PAO1 when grown in an artificial medium that mimics the CF lung environment compared to growth in standard laboratory medium. Proteins elevated in abundance in AES-1R included those involved in methionine and S-adenosylmethionine biosynthesis and in the synthesis of phenazines. Proteomic data were validated by measuring culture supernatant levels of the virulence factor pyocyanin, which is the final product of the phenazine pathway. AES-1R and PAO1 released higher extracellular levels of pyocyanin compared to PA14 when grown in conditions that mimic the CF lung. Proteins associated with biosynthesis of the iron-scavenging siderophore pyochelin (PchDEFGH and FptA) were also present at elevated abundance in AES-1R and at much higher levels than in PAO1, whereas they were reduced in PA14. These protein changes resulted phenotypically in increased extracellular iron acquisition potential and, specifically, elevated pyochelin levels in AES-1R culture supernatants as detected by chrome azurol-S assay and fluorometry, respectively. Transcript analysis of pyochelin genes (pchDFG and fptA) showed they were highly expressed during the early stage of growth in artificial sputum medium (18 h) but returned to basal levels following the establishment of microcolony growth (72 h) consistent with that observed in the CF lung. This provides further evidence that iron acquisition by pyochelin may play a role in the early stages of transmissible CF infection associated with AES-1R.


Asunto(s)
Fibrosis Quística/microbiología , Hierro/metabolismo , Fenoles/metabolismo , Pseudomonas aeruginosa/metabolismo , Tiazoles/metabolismo , Proteínas Bacterianas/análisis , Proteínas Bacterianas/metabolismo , Técnicas Bacteriológicas/métodos , Medios de Cultivo/química , Medios de Cultivo/metabolismo , Fibrosis Quística/metabolismo , Electroforesis en Gel Bidimensional , Interacciones Huésped-Patógeno , Humanos , Redes y Vías Metabólicas , Fenoles/análisis , Proteoma/análisis , Proteoma/metabolismo , Proteómica/métodos , Pseudomonas aeruginosa/crecimiento & desarrollo , Pseudomonas aeruginosa/patogenicidad , Piocianina/análisis , Piocianina/metabolismo , Esputo/microbiología , Espectrometría de Masas en Tándem , Tiazoles/análisis
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA