Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 1 de 1
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Int J Biol Macromol ; 132: 32-42, 2019 Jul 01.
Artículo en Inglés | MEDLINE | ID: mdl-30880053

RESUMEN

Analytical techniques such HPSEC, DSC, and TGA have been employed for amylose determination in starch samples, though spectrophotometry by iodine binding is most commonly used. The vast majority of these techniques require an analytical curve, using amylose and amylopectin standards with physicochemical properties similar to those found in the original starch. The current study aimed to obtain the amylose and amylopectin fractions from potato, banana, corn, and cassava starches, characterize them, and evaluate their behavior via thermogravimetric curves. Blue amylose iodine complex and HPSEC-DRI methods have obtained high purity amylose and amylopectin fractions. All molecular weights of the obtained amylose and amylopectin fractions were similar to those presented in other reports. Different results were obtained by deconvolution of the amylopectin polymodal distribution. All amyloses presented as semi-crystalline V-type polymorphs, while all amylopectin fractions were amorphous. The Tg of all Vamyloses presented were directly proportional to their respective crystalline index. TGA evaluations have shown that selective precipitation of amylose with 1-butanol strongly changes its thermal behavior. Therefore, the separation procedure used was an ineffective pathway for obtaining standards for thermal studies.


Asunto(s)
Amilopectina/química , Amilosa/química , Manihot/química , Musa/química , Solanum tuberosum/química , Zea mays/química , Amilopectina/aislamiento & purificación , Amilosa/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA