Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mol Pharm ; 14(12): 4685-4693, 2017 12 04.
Artículo en Inglés | MEDLINE | ID: mdl-29111754

RESUMEN

In humans, peptides derived from dietary proteins and peptide-like drugs are transported via the proton-dependent oligopeptide transporter hPepT1 (SLC15A1). hPepT1 is located across the apical membranes of the small intestine and kidney, where it serves as a high-capacity low-affinity transporter of a broad range of di- and tripeptides. hPepT1 is also overexpressed in the colon of inflammatory bowel disease (IBD) patients, where it mediates the transport of harmful peptides of bacterial origin. Therefore, hPepT1 is a drug target for prodrug substrates interacting with intracellular proteins or inhibitors blocking the transport of toxic bacterial products. In this study, we construct multiple structural models of hPepT1 representing different conformational states that occur during transport and inhibition. We then identify and characterize five ligands of hPepT1 using computational methods, such as virtual screening and QM-polarized ligand docking (QPLD), and experimental testing with uptake kinetic measurements and electrophysiological assays. Our results improve our understanding of the substrate and inhibitor specificity of hPepT1. Furthermore, the newly discovered ligands exhibit unique chemotypes, providing a framework for developing tool compounds with optimal intestinal absorption as well as future IBD therapeutics against this emerging drug target.


Asunto(s)
Modelos Químicos , Oligopéptidos/química , Transportador de Péptidos 1/química , Profármacos/química , Transporte Biológico Activo/efectos de los fármacos , Evaluación Preclínica de Medicamentos/métodos , Humanos , Concentración 50 Inhibidora , Absorción Intestinal/efectos de los fármacos , Absorción Intestinal/fisiología , Cinética , Ligandos , Modelos Moleculares , Simulación del Acoplamiento Molecular , Oligopéptidos/metabolismo , Transportador de Péptidos 1/antagonistas & inhibidores , Transportador de Péptidos 1/fisiología , Profármacos/farmacología
2.
PLoS Comput Biol ; 11(10): e1004477, 2015 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-26444490

RESUMEN

The Alanine-Serine-Cysteine transporter ASCT2 (SLC1A5) is a membrane protein that transports neutral amino acids into cells in exchange for outward movement of intracellular amino acids. ASCT2 is highly expressed in peripheral tissues such as the lung and intestines where it contributes to the homeostasis of intracellular concentrations of neutral amino acids. ASCT2 also plays an important role in the development of a variety of cancers such as melanoma by transporting amino acid nutrients such as glutamine into the proliferating tumors. Therefore, ASCT2 is a key drug target with potentially great pharmacological importance. Here, we identify seven ASCT2 ligands by computational modeling and experimental testing. In particular, we construct homology models based on crystallographic structures of the aspartate transporter GltPh in two different conformations. Optimization of the models' binding sites for protein-ligand complementarity reveals new putative pockets that can be targeted via structure-based drug design. Virtual screening of drugs, metabolites, fragments-like, and lead-like molecules from the ZINC database, followed by experimental testing of 14 top hits with functional measurements using electrophysiological methods reveals seven ligands, including five activators and two inhibitors. For example, aminooxetane-3-carboxylate is a more efficient activator than any other known ASCT2 natural or unnatural substrate. Furthermore, two of the hits inhibited ASCT2 mediated glutamine uptake and proliferation of a melanoma cancer cell line. Our results improve our understanding of how substrate specificity is determined in amino acid transporters, as well as provide novel scaffolds for developing chemical tools targeting ASCT2, an emerging therapeutic target for cancer and neurological disorders.


Asunto(s)
Sistema de Transporte de Aminoácidos ASC/química , Sistema de Transporte de Aminoácidos ASC/ultraestructura , Evaluación Preclínica de Medicamentos/métodos , Modelos Químicos , Simulación del Acoplamiento Molecular , Mapeo de Interacción de Proteínas/métodos , Algoritmos , Secuencia de Aminoácidos , Sitios de Unión , Antígenos de Histocompatibilidad Menor , Datos de Secuencia Molecular , Unión Proteica , Análisis de Secuencia de Proteína/métodos , Homología de Secuencia de Aminoácido
3.
Biochemistry ; 54(31): 4900-8, 2015 Aug 11.
Artículo en Inglés | MEDLINE | ID: mdl-26176240

RESUMEN

In mammals, citric acid cycle intermediates play a key role in regulating various metabolic processes, such as fatty acid synthesis and glycolysis. Members of the sodium-dependent SLC13 transporter family mediate the transport of di- and tricarboxylates into cells. SLC13 family members have been implicated in lifespan extension and resistance to high-fat diets; thus, they are emerging drug targets for aging and metabolic disorders. We previously characterized key structural determinants of substrate and cation binding for the human NaDC3/SLC13A3 transporter using a homology model. Here, we combine computational modeling and virtual screening with functional and biochemical testing, to identify nine previously unknown inhibitors for multiple members of the SLC13 family from human and mouse. Our results reveal previously unknown substrate selectivity determinants for the SLC13 family, including key residues that mediate ligand binding and transport, as well as promiscuous and specific SLC13 small molecule ligands. The newly discovered ligands can serve as chemical tools for further characterization of the SLC13 family or as lead molecules for the future development of potent inhibitors for the treatment of metabolic diseases and aging. Our results improve our understanding of the structural components that are important for substrate specificity in this physiologically important family as well as in other structurally related transport systems.


Asunto(s)
Modelos Moleculares , Transportadores de Anión Orgánico Sodio-Dependiente/antagonistas & inhibidores , Transportadores de Anión Orgánico Sodio-Dependiente/química , Animales , Dominio Catalítico , Evaluación Preclínica de Medicamentos/métodos , Células HEK293 , Humanos , Ratones , Transportadores de Anión Orgánico Sodio-Dependiente/metabolismo , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA