Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 8(1): 13195, 2018 09 04.
Artículo en Inglés | MEDLINE | ID: mdl-30181567

RESUMEN

Detecting covert consciousness in behaviorally unresponsive patients by brain imaging is of great interest, but a reproducible model and evidence from independent sources is still lacking. Here we demonstrate the possibility of using general anesthetics in a within-subjects study design to test methods or statistical paradigms of assessing covert consciousness. Using noninvasive neuroimaging in healthy volunteers, we identified a healthy study participant who was able to exhibit the specific fMRI signatures of volitional mental imagery while behaviorally unresponsive due to sedation with propofol. Our findings reveal a novel model that may accelerate the development of new approaches to reproducibly detect covert consciousness, which is difficult to achieve in patients with heterogeneous and sometimes clinically unstable neuropathology.


Asunto(s)
Encéfalo/efectos de los fármacos , Encéfalo/fisiología , Estado de Conciencia/efectos de los fármacos , Hipnóticos y Sedantes/farmacología , Propofol/farmacología , Adulto , Anestésicos Intravenosos/farmacología , Encéfalo/diagnóstico por imagen , Mapeo Encefálico , Femenino , Humanos , Imagen por Resonancia Magnética , Masculino , Neuroimagen , Adulto Joven
2.
mBio ; 6(3): e00647, 2015 Jun 23.
Artículo en Inglés | MEDLINE | ID: mdl-26106079

RESUMEN

UNLABELLED: Recent estimates suggest that >300 million people are afflicted by serious fungal infections worldwide. Current antifungal drugs are static and toxic and/or have a narrow spectrum of activity. Thus, there is an urgent need for the development of new antifungal drugs. The fungal sphingolipid glucosylceramide (GlcCer) is critical in promoting virulence of a variety of human-pathogenic fungi. In this study, we screened a synthetic drug library for compounds that target the synthesis of fungal, but not mammalian, GlcCer and found two compounds [N'-(3-bromo-4-hydroxybenzylidene)-2-methylbenzohydrazide (BHBM) and its derivative, 3-bromo-N'-(3-bromo-4-hydroxybenzylidene) benzohydrazide (D0)] that were highly effective in vitro and in vivo against several pathogenic fungi. BHBM and D0 were well tolerated in animals and are highly synergistic or additive to current antifungals. BHBM and D0 significantly affected fungal cell morphology and resulted in the accumulation of intracellular vesicles. Deep-sequencing analysis of drug-resistant mutants revealed that four protein products, encoded by genes APL5, COS111, MKK1, and STE2, which are involved in vesicular transport and cell cycle progression, are targeted by BHBM. IMPORTANCE: Fungal infections are a significant cause of morbidity and mortality worldwide. Current antifungal drugs suffer from various drawbacks, including toxicity, drug resistance, and narrow spectrum of activity. In this study, we have demonstrated that pharmaceutical inhibition of fungal glucosylceramide presents a new opportunity to treat cryptococcosis and various other fungal infections. In addition to being effective against pathogenic fungi, the compounds discovered in this study were well tolerated by animals and additive to current antifungals. These findings suggest that these drugs might pave the way for the development of a new class of antifungals.


Asunto(s)
Antifúngicos/aislamiento & purificación , Antifúngicos/farmacología , Compuestos de Bencilo/aislamiento & purificación , Compuestos de Bencilo/farmacología , Vías Biosintéticas/efectos de los fármacos , Hongos/efectos de los fármacos , Esfingolípidos/biosíntesis , Animales , Antifúngicos/efectos adversos , Antifúngicos/toxicidad , Compuestos de Bencilo/efectos adversos , Compuestos de Bencilo/toxicidad , Candidiasis/tratamiento farmacológico , Línea Celular , Supervivencia Celular/efectos de los fármacos , Recuento de Colonia Microbiana , Modelos Animales de Enfermedad , Evaluación Preclínica de Medicamentos/métodos , Sinergismo Farmacológico , Efectos Colaterales y Reacciones Adversas Relacionados con Medicamentos , Hongos/citología , Hongos/metabolismo , Hongos/fisiología , Macrófagos/efectos de los fármacos , Macrófagos/fisiología , Ratones , Pruebas de Sensibilidad Microbiana , Viabilidad Microbiana/efectos de los fármacos , Microscopía Electrónica de Transmisión , Estructura Molecular , Esfingolípidos/antagonistas & inhibidores , Resultado del Tratamiento
3.
mBio ; 5(6): e01834, 2014 Nov 04.
Artículo en Inglés | MEDLINE | ID: mdl-25370490

RESUMEN

UNLABELLED: In the context of deciphering the metabolic strategies of the obligate pathogenic fungi in the genus Pneumocystis, the genomes of three species (P. carinii, P. murina, and P. jirovecii) were compared among themselves and with the free-living, phylogenetically related fission yeast (Schizosaccharomyces pombe). The underrepresentation of amino acid metabolism pathways compared to those in S. pombe, as well as the incomplete steroid biosynthesis pathway, were confirmed for P. carinii and P. jirovecii and extended to P. murina. All three Pneumocystis species showed overrepresentation of the inositol phosphate metabolism pathway compared to that in the fission yeast. In addition to those known in S. pombe, four genes, encoding inositol-polyphosphate multikinase (EC 2.7.1.151), inositol-pentakisphosphate 2-kinase (EC 2.7.1.158), phosphoinositide 5-phosphatase (EC 3.1.3.36), and inositol-1,4-bisphosphate 1-phosphatase (EC 3.1.3.57), were identified in the two rodent Pneumocystis genomes, P. carinii and P. murina. The P. jirovecii genome appeared to contain three of these genes but lacked phosphoinositide 5-phosphatase. Notably, two genes encoding enzymes essential for myo-inositol synthesis, inositol-1-phosphate synthase (INO1) and inositol monophosphatase (INM1), were absent from all three genomes, suggesting that Pneumocystis species are inositol auxotrophs. In keeping with the need to acquire exogenous inositol, two genes with products homologous to fungal inositol transporters, ITR1 and ITR2, were identified in P. carinii and P. murina, while P. jirovecii contained only the ITR1 homolog. The ITR and inositol metabolism genes in P. murina and P. carinii were expressed during fulminant infection as determined by reverse transcriptase real-time PCR of cDNA from infected lung tissue. Supplementation of in vitro culture with inositol yielded significant improvement of the viability of P. carinii for days 7 through 14. IMPORTANCE: Microbes in the genus Pneumocystis are obligate pathogenic fungi that reside in mammalian lungs and cause Pneumocystis pneumonia in hosts with weakened immune systems. These fungal infections are not responsive to standard antifungal therapy. A long-term in vitro culture system is not available for these fungi, impeding the study of their biology and genetics and new drug development. Given that all genomes of the Pneumocystis species analyzed lack the genes for inositol synthesis and contain inositol transporters, Pneumocystis fungi, like S. pombe, appear to be inositol auxotrophs. Inositol is important for the pathogenesis, virulence, and mating processes in Candida albicans and Cryptococcus neoformans, suggesting similar importance within the Pneumocystis species as well. This is the first report to (i) characterize genes in the inositol phosphate metabolism and transport pathways in Pneumocystis species and (ii) identify inositol as a supplement that improved the viability of P. carinii in in vitro culture.


Asunto(s)
Genoma Fúngico , Inositol/biosíntesis , Inositol/metabolismo , Redes y Vías Metabólicas/genética , Pneumocystis/genética , Pneumocystis/metabolismo , Animales , Biología Computacional , Medios de Cultivo/química , ADN de Hongos/química , ADN de Hongos/genética , Perfilación de la Expresión Génica , Genes Fúngicos , Pulmón/microbiología , Proteínas de Transporte de Membrana/genética , Viabilidad Microbiana , Datos de Secuencia Molecular , Infecciones por Pneumocystis/microbiología , Ratas , Reacción en Cadena en Tiempo Real de la Polimerasa , Reacción en Cadena de la Polimerasa de Transcriptasa Inversa , Análisis de Secuencia de ADN
4.
Antimicrob Agents Chemother ; 55(10): 4513-8, 2011 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-21788469

RESUMEN

The targeted inhibition of cyst but not trophic development by anidulafungin, caspofungin, and micafungin on Pneumocystis murina and Pneumocystis carinii in rodent models of Pneumocystis carinii pneumonia (PCP) was recently reported by us (M. T. Cushion et al., PLoS One 5:e8524, 2010). To better understand the effects of echinocandins on P. carinii, the same three compounds were evaluated in standard suspension and biofilm cultures supplemented with various concentrations of sera using the measurement of ATP as the indicator. In suspension cultures with 1 and 5% serum, anidulafungin was the most active compound but 10 and 20% serum abrogated the efficacy of all three echinocandins. Established biofilm cultures that included both the nonadherent and adherent phases were more resistant to micafungin than caspofungin regardless of serum concentration, while anidulafungin had significant activity at 1 and 5% serum concentrations. Nascent biofilms were mostly affected by anidulafungin in 1 and 5% serum, but none of the compounds showed significant activity in 20% serum. We show for the first time that (i) echinocandins differ in their abilities to deplete the ATP of Pneumocystis in biofilms and in suspension cultures, (ii) this variability mostly reflected the reported efficacies in animal models of infection, and (iii) high serum levels decreased the anti-Pneumocystis activities of the echinocandins in both in vitro systems.


Asunto(s)
Antifúngicos/farmacología , Biopelículas/efectos de los fármacos , Equinocandinas/farmacología , Pneumocystis carinii/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Anidulafungina , Animales , Caspofungina , Farmacorresistencia Fúngica , Lipopéptidos/farmacología , Micafungina , Pruebas de Sensibilidad Microbiana , Infecciones por Pneumocystis/tratamiento farmacológico , Ratas
5.
Antimicrob Agents Chemother ; 48(11): 4209-16, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15504843

RESUMEN

Trimethoprim-sulfamethoxazole and pentamidine isethionate have been used extensively for the prophylaxis and therapy of pneumonia caused by Pneumocystis jirovecii. Problems associated with toxicity and potential emerging resistance for both therapies necessitate the development of safe and effective analogs or new treatment strategies. In the present study, a library of 36 compounds was synthesized by using the pentamidine molecule as the parent compound modified by a 1,4-piperazinediyl moiety as the central linker to restrict conformation flexibility. The compounds were evaluated for anti-Pneumocystis carinii activity in a bioluminescent ATP-driven assay. Four of the compounds were highly active, with 50% inhibitory concentration (IC(50)) values of <0.01 microg/ml; four had very marked activity (IC(50) < 0.10 microg/ml); ten had marked activity (IC(50) < 1.0 microg/ml); nine had moderate activity (IC(50) < 10 microg/ml); one had slight activity (IC(50) = 34.1 microg/ml); and the remaining eight did not demonstrate activity in this assay system. The high level of activity was specifically associated with an alkyl chain length of five to six carbons attached to one of the nitrogens of the bisamidinium groups. None of the highly active compounds and only one of the very marked compounds exhibited any toxicity when evaluated in three mammalian cell lines. The strategy of substitution of 1,4-piperazine-linked bisbenzamidines produced compounds with the highest level of activity observed in the ATP assay and holds great promise for the development of efficacious anti-P. carinii therapy.


Asunto(s)
Antifúngicos/síntesis química , Antifúngicos/farmacología , Benzamidinas/síntesis química , Benzamidinas/farmacología , Piperazinas/síntesis química , Piperazinas/farmacología , Pneumocystis carinii/efectos de los fármacos , Adenosina Trifosfato/metabolismo , Animales , Antifúngicos/toxicidad , Benzamidinas/toxicidad , Células Cultivadas , Evaluación Preclínica de Medicamentos , Humanos , Indicadores y Reactivos , Luciferasas , Pruebas de Sensibilidad Microbiana , Piperazinas/toxicidad , Ratas , Ratas Endogámicas BN , Ratas Long-Evans , Relación Estructura-Actividad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA