Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
J Dairy Sci ; 104(2): 2384-2395, 2021 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-33246605

RESUMEN

The objective of the current study was first to characterize lipid raft microdomains isolated as detergent-resistant membranes (DRM) from mammary gland tissue, and second to determine how dietary fatty acids (FA) such as conjugated linoleic acid (CLA), 19:1 cyclo, and long-chain n-3 polyunsaturated FA affect lipid raft markers of mammary cells, and to finally establish relationships between these markers and lactation performance in dairy cows. Eight Holstein cows were used in a replicated 4 × 4 Latin square design with periods of 28 d. For the first 14 d, cows received daily an abomasal infusion of (1) 406 g of a saturated FA supplement (112 g of 16:0 + 230 g of 18:0) used as a control; (2) 36 g of a CLA supplement (13.9 g of trans-10,cis-12 18:2) + 370 g of saturated FA; (3) 7 g of Sterculia fetida oil (3.1 g of 19:1 cyclo, STO) + 399 g of saturated FA; or (4) 406 g of fish oil (55.2 g of cis-5,cis-8,cis-11,cis-14,cis-17 20:5 + 59.3 g of cis-4,cis-7,cis-10,cis-13,cis-16,cis-19 22:6, FO). Mammary biopsies were harvested on d 14 of each infusion period and were followed by a 14-d washout interval. Cholera toxin subunit B, which specifically binds to ganglioside M-1 (GM-1), a lipid raft marker, was used to assess its distribution in DRM. Infusions of CLA, STO, and FO were individually compared with the control, and significance was declared at P ≤ 0.05. Milk fat yield was decreased with CLA and FO, but was not affected by STO. Milk lactose yield was decreased with CLA and STO, but was not affected by FO. Mammary tissue shows a strong GM-1-signal enrichment in isolated DRM from mammary gland tissue. Caveolin (CAV) and flotillin (FLOT) are 2 proteins considered as lipid raft markers and they are present in DRM from mammary gland tissue. Distributions of GM-1, CAV-1, and FLOT-1 showed an effect of treatments determined by their subcellular distributions in sucrose gradient fractions. Regardless of treatments, data showed positive relationships between the yield of milk fat, protein, and lactose, and the abundance GM-1 in DRM fraction. Milk protein yield was positively correlated with relative proportion of FLOT-1 in the soluble fraction, whereas lactose yield was positively correlated with relative proportion of CAV-1 in the DRM fractions. Infusion of CLA decreased mRNA abundance of CAV-1, FLOT-1, and FLOT-2. Regardless of treatments, a positive relationship was observed between fat yield and mRNA abundance of FLOT-2. In conclusion, although limited to a few markers, results of the current experiment raised potential links between variation in specific biologically active component of raft microdomains in bovine mammary gland and lactation performances in dairy cows.


Asunto(s)
Alimentación Animal , Grasas de la Dieta/farmacología , Suplementos Dietéticos , Ácidos Grasos/farmacología , Glándulas Mamarias Animales/efectos de los fármacos , Microdominios de Membrana/metabolismo , Abomaso/metabolismo , Animales , Bovinos , Dieta/veterinaria , Femenino , Aceites de Pescado/administración & dosificación , Lactancia/efectos de los fármacos , Ácidos Linoleicos Conjugados/farmacología , Microdominios de Membrana/efectos de los fármacos , Leche/metabolismo , Proteínas de la Leche/metabolismo , Sterculia
2.
Br J Nutr ; 124(4): 386-395, 2020 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-32008585

RESUMEN

The aim of the present study was to compare the effects of post-ruminally infused fat supplements, varying in fatty acid (FA) chain length, on animal performance, metabolism and milk FA. Eleven multiparous Holstein dairy cows were used in a replicated incomplete 3 × 3 Latin square design with 7-d periods, separated by 7-d washouts. Treatments were administered as abomasal infusions of enrichments providing 280 g/d of FA: (1) palmitic acid (98·4 % 16 : 0; PA), (2) caprylic and capric acids (56·2 % 8 : 0, 43·8 % 10 : 0; medium-chain TAG (MCT)) and (3) stearic acid (99·0 % 18 : 0; SA). Relative to PA, SA decreased the efficiency of fat-corrected milk production, which was associated with a tendency for higher DM intake and lower FA absorption with SA, whereas MCT was not different from PA for these variables. Milk fat concentration and yield were increased by PA relative to SA, but only fat yield tended to be greater relative to MCT. Relative to PA, MCT increased milk fat concentration of FA < 16 C, whereas SA increased FA > 16 C. Expression of mammary stearoyl-coA desaturase 1 was lower with SA than with PA. Relative to PA, liver expression of adenosine monophosphate-activated protein kinase-1 and pyruvate kinase was increased with MCT, whereas expression of these genes tended to be increased by SA. The mechanism of increased fat secretion with PA does not seem to be related to a modulation of the expression of lipogenesis-related genes, but rather to increased substrate availability as reflected by milk FA profile.


Asunto(s)
Ácidos Grasos/administración & dosificación , Expresión Génica/efectos de los fármacos , Lactancia/efectos de los fármacos , Leche/química , Abomaso/metabolismo , Animales , Bovinos , Femenino , Hígado/metabolismo , Glándulas Mamarias Animales/metabolismo
3.
J Dairy Sci ; 102(3): 2266-2274, 2019 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-30639005

RESUMEN

The objective of this study was to evaluate the effects of supplementing xylanase on production performance, nutrient digestibility, and milk fatty acid profile in high-producing dairy cows consuming corn silage- or sorghum silage-based diets. Conventional corn (80,000 seeds/ha) and brown midrib forage sorghum (250,000 seeds/ha) were planted, harvested [34 and 32% of dry matter (DM), respectively], and ensiled for more than 10 mo. Four primiparous and 20 multiparous Holstein cows were randomly assigned to 1 of 4 diets in a replicated 4 × 4 Latin square design with a 2 × 2 factorial arrangement of treatments and 19-d periods. Treatment diets consisted of (1) corn silage-based diet without xylanase, (2) corn silage-based diet with xylanase, (3) sorghum silage-based diet without xylanase, and (4) sorghum silage-based diet with xylanase. The xylanase product was supplemented at a rate of 1.5 g of product/kg of total DM. Corn silage had higher concentrations of starch (31.2 vs. 29.2%), slightly higher concentrations of crude protein (7.1 vs. 6.8%) and fat (3.7 vs. 3.2%), and lower concentrations of neutral detergent fiber (36.4 vs. 49.0%) and lignin (2.1 vs. 5.7%) than sorghum silage. Xylanase supplementation did not affect DM intake, milk yield, milk fat percentage and yield, milk protein percentage and yield, lactose percentage and yield, and 3.5% fat-corrected milk yield. Cows consuming corn silage-based diets consumed 13% more DM (28.8 vs. 25.5 kg/d) and produced 5% more milk (51.6 vs. 48.9 kg/d) than cows consuming sorghum silage-based diets. Milk from cows consuming sorghum silage-based diets had 16% greater fat concentrations (3.84 and 3.30%) than milk from cows consuming corn silage-based diets. This resulted in 8% greater fat yields (1.81 vs. 1.68 kg/d). Silage type did not affect milk protein and lactose concentrations. Xylanase supplementation did not affect nutrient digestibility. Cows consuming corn silage-based diets showed greater DM (77.3 vs. 73.5%), crude protein (78.0 vs. 72.4), and starch (99.2 vs. 96.5%) digestibilities than cows consuming sorghum silage-based diets. In conclusion, xylanase supplementation did not improve production performance when high-producing dairy cows were fed corn silage- or sorghum silage-based diets. In addition, production performance can be sustained by feeding sorghum silage in replacement of corn silage.


Asunto(s)
Bovinos/fisiología , Digestión , Endo-1,4-beta Xilanasas/metabolismo , Lactancia , Leche/química , Ensilaje/análisis , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Dieta/veterinaria , Suplementos Dietéticos/análisis , Endo-1,4-beta Xilanasas/administración & dosificación , Ácidos Grasos/metabolismo , Femenino , Nutrientes/fisiología , Ensilaje/clasificación , Sorghum/química , Zea mays/química
4.
J Anim Sci ; 92(12): 5464-75, 2014 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-25367510

RESUMEN

The study was conducted to determine effects of dietary supplementation with a blend of antioxidants (ethoxyquin and propyl gallate) on carcass characteristics, meat quality, and fatty acid profile in finishing pigs fed a diet high in oxidants. A total of 100 crossbred barrows (10.9±1.4 kg BW, 36±2 d of age) were randomly allotted to 5 diet treatments (5 replicate pens per treatment, 4 pigs per pen). Treatments included: 1) HO: high oxidant diet containing 5% oxidized soy oil and 10% PUFA source which contributed 5.56% crude fat and 2.05% docosahexanoic acid (DHA) to the diet; 2) VE: the HO diet with 11 IU/kg of added vitamin E; 3) AOX: the HO diet with antioxidant blend (135 mg/kg); 4) VE+AOX: the HO diet with both vitamin E and antioxidant blend; and 5) SC: a standard corn-soy control diet with nonoxidized oil and no PUFA source. The trial lasted for 118 d; on d 83, the HO diet pigs were switched to the SC diet due to very poor health. From that point, the VE pigs displayed the poorest performance. On d 118, 2 pigs from each pen were harvested for sampling. Compared to pigs fed SC diet, the HO and VE pigs (P<0.05) showed lighter carcass weight, less back fat, less lean body mass, and smaller loin eye area. In addition, the VE pigs had decreased dressing percentage than the AOX and VE+AOX pigs (65.7 vs. 75.3 and 74.2%). Compared to the SC pigs, greater moisture percentage (74.7 vs. 77.4%) and less extractable lipid content (2.43 vs. 0.95%) were found in VE fed pigs (P<0.05). Drip loss of loin muscle in VE pigs was less than SC pigs (0.46 vs. 3.98%, P=0.02), which was associated with a trend for a greater 24-h muscle pH (5.74 vs. 5.54, P=0.07). The antioxidant blend addition in the high oxidant diet attenuated all of these effects to levels similar to SC (P>0.05), except a* value (redness) and belly firmness. Visible yellow coloration of backfat and lipofuscin in HO and VE pigs was observed at harvest at d 118. The high oxidant diet resulted in greater concentration of DHA in backfat (P<0.001); switching the diet on d 83 resulted in HO pigs having a similar fatty acid profile to SC at d 118 pigs. Vitamin E concentration in plasma and muscle was greater in HO and SC than VE, AOX, and VE+AOX on d 118. Feeding the high oxidant diet caused a series of changes in carcass characteristics and meat quality. Addition of antioxidant blend attenuated many of these, whereas the protective effects of supplemental vitamin E at 11 IU/kg were minimal during the finisher phase of the study.


Asunto(s)
Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Antioxidantes/farmacología , Composición Corporal/efectos de los fármacos , Suplementos Dietéticos/análisis , Carne , Sus scrofa/crecimiento & desarrollo , Animales , Dieta/veterinaria , Ácidos Grasos/análisis , Masculino , Oxidantes/administración & dosificación , Oxidación-Reducción , Aceite de Soja , Porcinos , Sustancias Reactivas al Ácido Tiobarbitúrico , Vitamina E/administración & dosificación , Vitamina E/farmacología , Zea mays
5.
J Dairy Sci ; 97(10): 6411-25, 2014 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-25064649

RESUMEN

The purpose of this study was to determine the effects of conjugated linoleic acid (CLA), Sterculia foetida oil (STO), and fish oil (FO) on milk yield and composition, milk FA profile, Δ(9)-desaturation activity, and mammary expression of 2 isoforms of stearoyl-coenzyme A desaturase (SCD-1 and SCD-5) in lactating dairy cows. Eight multiparous Holstein cows (69 ± 13 d postpartum) were used in a double 4 × 4 Latin square design with 28-d periods. For the first 14 d of each period, cows received an abomasal infusion of (1) 406 g of a saturated fatty acid (SFA) supplement (112 g of 16:0 + 230 g of 18:0) used as a control (CTL), (2) 36 g of a CLA supplement (13.9 g of trans-10,cis-12 18:2) + 370 g of SFA, (3) 7 g of STO (3.1g of 19:1 cyclo) + 399 g of SFA, or (4) 406 g of FO (55.2 g of cis-5,-8,-11,-14,-17 20:5 + 59.3 g of cis-4,-7,-10,-13,-16,-19 22:6). Infusions were followed by a 14-d washout interval. Compared with CTL, STO decreased milk yield from 38.0 to 33.0 kg/d, and increased milk fat concentration from 3.79 to 4.45%. Milk fat concentration was also decreased by CLA (2.23%) and FO (3.34%). Milk fat yield was not affected by STO (1,475 g/d) compared with CTL (1,431 g/d), but was decreased by CLA (774 g/d) and FO (1,186 g/d). Desaturase indices for 10:0, 12:0, and 20:0 were decreased, whereas the extent of desaturation of 14:0, 16:0, 17:0, and 18:0 was not affected by CLA treatment compared with CTL. Infusion of STO significantly decreased all calculated desaturase indices compared with CTL; the 14:0 index was reduced by 80.7%. Infusion of FO decreased the desaturase indices for 10:0, 14:0, 20:0, trans-11 18:1, and 18:0. The effect of FO on the 14:0 index indicates a decrease in apparent Δ(9)-desaturase activity of 30.2%. Compared with CTL, mammary mRNA abundance of SCD-1 was increased by STO (+30%) and decreased by CLA (-24%), whereas FO had no effect. No effect was observed on mRNA abundance of SCD-5. In conclusion, abomasal infusion of CLA, STO, and FO were shown to exhibit varying and distinct effects on desaturase indices, an indicator of apparent SCD activity, and mammary mRNA abundance of SCD-1.


Asunto(s)
Bovinos/fisiología , Aceites de Pescado/farmacología , Ácidos Linoleicos Conjugados/farmacología , Leche/metabolismo , Aceites de Plantas/farmacología , Estearoil-CoA Desaturasa/metabolismo , Abomaso/metabolismo , Animales , Suplementos Dietéticos , Ácidos Grasos/metabolismo , Femenino , Infusiones Parenterales/veterinaria , Lactancia , Ácidos Linoleicos Conjugados/administración & dosificación , Leche/química , Estearoil-CoA Desaturasa/genética , Sterculia/química
6.
Poult Sci ; 93(7): 1658-66, 2014 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-24864279

RESUMEN

The aim of the current study was to determine the effects of a dietary antioxidant blend and vitamin E on fatty acid profile, inflammatory response, and liver function. Cobb 500 male broilers (n = 1,200, d 0) were randomly distributed into 6 treatments with 10 replicate floor pens. Treatments included (1) a high-oxidant diet, with vitamin E at 10 IU/kg, 3% oxidized oil, 3% polyunsaturated fatty acids (PUFA) source (HO); (2) the HO diet with vitamin E at 200 IU/kg (VE); (3) the HO diet with an antioxidant blend at 135 mg/kg (AOX); (4) the HO diet with both vitamin E at 200 IU/kg and an antioxidant blend at 135 mg/kg (VE+AOX); (5) standard control (SC); and (6) a positive control, which was the SC diet with an antioxidant blend at 135 mg/kg. The concentrations of 20:4, 20:5, 22:5, 22:6, and all the n-3 fatty acids were greater in the abdominal fat of HO, VE, AOX, and VE+AOX birds than SC and positive control birds on d 21 and 42 (P < 0.001). Compared with HO treatment, AOX and VE+AOX preserved the deposition of PUFA better (P < 0.001). The HO birds had greater concentrations of aspartate aminotransferase on d 21 and 42, and γ-glutamyl transferase on d 21, whereas AOX and VE+AOX chickens had restored γ-glutamyl transferase concentration (P < 0.01). The inflammation scores of abdominal fat of AOX and VE+AOX birds were lower than the HO on d 21 (P < 0.001). Compared with SC, the VE and VE+AOX birds exhibited greater vacuole scores on d 21 and 42 (P < 0.01). The lower vacuoles score in SC was associated with a greater expression of peroxisome proliferator activated receptor -γ and -α (P < 0.05). The expression of inflammatory genes in the liver did not differ among treatments. In conclusion, the AOX and AOX+VE diets were effective in preserving PUFA in the abdominal fat, moderately improved liver function, and reduced inflammation in fat.


Asunto(s)
Antioxidantes , Pollos/fisiología , Dieta/veterinaria , Suplementos Dietéticos , Etoxiquina/metabolismo , Galato de Propilo/metabolismo , Vitamina E/metabolismo , Alimentación Animal/análisis , Animales , Proteínas Aviares/genética , Proteínas Aviares/metabolismo , Pollos/crecimiento & desarrollo , Ácidos Grasos/metabolismo , Regulación de la Expresión Génica , Hígado/fisiología , Pruebas de Función Hepática/veterinaria , Masculino , Oxidantes/metabolismo , Distribución Aleatoria
7.
Lipids ; 48(5): 469-79, 2013 May.
Artículo en Inglés | MEDLINE | ID: mdl-23504269

RESUMEN

Supplementing dairy cows with n-3 fatty acid-rich feeds does not easily increase quantities in milk fat. Previous results demonstrated very long-chain n-3 fatty acids are primarily transported in the PL fraction of blood, making them largely unavailable to the mammary gland for enrichment of milk fat. Our objective was to compare mammary uptake of fatty acids of increasing chain length and unsaturation delivered intravenously as TAG emulsions. Late lactation dairy cows were assigned to a completely randomized block design. Treatments were intravenous TAG emulsions enriched with oleic acid (OLA), linoleic acid (LNA), alpha-linolenic acid (ALA), or docosahexaenoic acid (DHA) and were delivered continuously at 16 mL/h for 72 h. Each treatment supplied 30 g/day of the target fatty acid. Treatment did not affect feed intake, milk yield, or milk composition, but all treatments reduced intake and yield. The proportion of DHA increased in plasma FFA, TAG, and PL with infusion. Increases of n-3 fatty acids, ALA, EPA, and DHA, were evident in the plasma PL fraction, suggesting re-esterification in the liver. Transfer efficiencies were 37.8 ± 4.1, 27.6 ± 5.4, and 10.9 ± 4.1 %, and day 3 total milk fatty acyl yields were 37.0 ± 3.4, 10.8 ± 0.4, and 3.3 ± 0.3 g for LNA, ALA, and DHA. Variation in oleic acyl yield prevented calculation of OLA transfer efficiency. Mammary uptake of fatty acids was reduced with increased chain length and unsaturation. Both liver and mammary mechanisms may regulate transfer of long-chain polyunsaturates.


Asunto(s)
Ácidos Docosahexaenoicos/administración & dosificación , Lactancia , Ácido Linoleico/administración & dosificación , Glándulas Mamarias Animales/metabolismo , Ácido Oléico/administración & dosificación , Ácido alfa-Linolénico/administración & dosificación , Animales , Bovinos , Suplementos Dietéticos/análisis , Ácidos Docosahexaenoicos/sangre , Ácidos Docosahexaenoicos/metabolismo , Ácidos Grasos Omega-3/sangre , Ácidos Grasos Omega-3/metabolismo , Femenino , Infusiones Intravenosas , Ácido Linoleico/sangre , Ácido Linoleico/metabolismo , Leche/química , Leche/metabolismo , Ácido Oléico/sangre , Ácido Oléico/metabolismo , Triglicéridos/administración & dosificación , Triglicéridos/sangre , Ácido alfa-Linolénico/sangre , Ácido alfa-Linolénico/metabolismo
8.
J Dairy Sci ; 95(9): 5269-5275, 2012 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-22916931

RESUMEN

Fish oil is used as a ration additive to provide n-3 fatty acids to dairy cows. Fish do not synthesize n-3 fatty acids; they must consume microscopic algae or other algae-consuming fish. New technology allows for the production of algal biomass for use as a ration supplement for dairy cattle. Lipid encapsulation of the algal biomass protects n-3 fatty acids from biohydrogenation in the rumen and allows them to be available for absorption and utilization in the small intestine. Our objective was to examine the use of algal products as a source for n-3 fatty acids in milk. Four mid-lactation Holsteins were assigned to a 4×4 Latin square design. Their rations were supplemented with 1× or 0.5× rumen-protected (RP) algal biomass supplement, 1× RP algal oil supplement, or no supplement for 7 d. Supplements were lipid encapsulated (Balchem Corp., New Hampton, NY). The 1× supplements provided 29 g/d of docosahexaenoic acid (DHA), and 0.5× provided half of this amount. Treatments were analyzed by orthogonal contrasts. Supplementing dairy rations with rumen-protected algal products did not affect feed intake, milk yield, or milk component yield. Short- and medium-chain fatty acid yields in milk were not influenced by supplements. Both 0.5× and 1× RP algae supplements increased daily milk fat yield of DHA (0.5 and 0.6±0.10 g/d, respectively) compared with 1× RP oil (0.3±0.10 g/d), but all supplements resulted in milk fat yields greater than that of the control (0.1±0.10g/d). Yield of trans-18:1 fatty acids in milk fat was also increased by supplementation. Trans-11 18:1 yield (13, 20, 27, and 15±3.0 g/d for control, 0.5× RP algae, 1× RP algae, and 1× RP oil, respectively) was greater for supplements than for control. Concentration of DHA in the plasma lipid fraction on d 7 showed that the DHA concentration was greatest in plasma phospholipid. Rumen-protected algal biomass provided better DHA yield than algal oil. Feeding lipid-encapsulated algae supplements may increase n-3 content in milk fat without adversely affecting milk fat yield; however, preferential esterification of DHA into plasma phospholipid may limit its incorporation into milk fat.


Asunto(s)
Suplementos Dietéticos , Ácidos Grasos Omega-3/farmacología , Microalgas , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales/efectos de los fármacos , Fenómenos Fisiológicos Nutricionales de los Animales/fisiología , Animales , Bovinos , Dieta , Ácidos Grasos/administración & dosificación , Ácidos Grasos/farmacología , Ácidos Grasos Omega-3/administración & dosificación , Femenino , Lactancia/efectos de los fármacos , Lactancia/fisiología , Microalgas/química
9.
J Dairy Sci ; 94(11): 5544-57, 2011 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-22032378

RESUMEN

The objective of this study was to investigate the effect of metabolizable protein (MP) deficiency and coconut oil supplementation on N utilization and production in lactating dairy cows. The hypothesis of the study was that a decrease in ruminal protozoal counts with coconut oil would increase microbial protein synthesis in the rumen, thus compensating for potential MP deficiency. The experiment was conducted for 10 wk with 36 cows (13 primiparous and 23 multiparous), including 6 ruminally cannulated cows. The experimental period, 6 wk, was preceded by 2-wk adaptation and 2-wk covariate periods. Cows were blocked by parity, days in milk, milk yield, and rumen cannulation and randomly assigned to one of the following diets: a diet with a positive MP balance (+44 g/d) and 16.7% dietary crude protein (CP) concentration (AMP); a diet deficient in MP (-156 g/d) and 14.8% CP concentration (DMP); or DMP supplemented with approximately 500 g of coconut oil/head per day (DMPCO). Ruminal ammonia tended to be greater and plasma urea N (20.1, 12.8, and 13.1 mg/dL, for AMP, DMP, and DMPCO diets, respectively) and milk urea N (12.5, 8.3, and 9.5mg/dL, respectively) were greater for AMP compared with DMP and DMPCO. The DMPCO diet decreased total protozoa counts (by 60%) compared with DMP, but had no effect on the methanogens profile in the rumen. Total tract apparent digestibility of dry matter and CP was decreased by DMP compared with AMP. Fiber digestibility was lower for both DMP and DMPCO compared with AMP. Urinary N excretion was decreased (by 37%) by both DMP and DMPCO compared with AMP. The DMP and DMPCO diets resulted in greater milk N efficiency compared with AMP (32.0 and 35.1 vs. 27.6%, respectively). Milk yield was decreased by both DMP and DMPCO compared with AMP (36.2, 34.4, and 39.3 kg/d, respectively) and coconut oil supplementation suppressed feed intake and caused milk fat depression. Coconut oil supplementation decreased short-chain fatty acid (C4:0, C6:0, and C8:0) concentration and increased medium-chain (C12:0 and C14:0) and total trans fatty acids in milk. Overall, the MP-deficient diets decreased N losses, but could not sustain milk production in this study. Coconut oil decreased feed intake and similar to DMP, suppressed fiber digestibility. Despite decreased protozoal counts, coconut oil had no effect on the methanogen population in the rumen.


Asunto(s)
Bovinos , Dieta/veterinaria , Proteínas en la Dieta/metabolismo , Suplementos Dietéticos , Lactancia , Nitrógeno/metabolismo , Aceites de Plantas , Alimentación Animal/análisis , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Bacterias/metabolismo , Bovinos/metabolismo , Bovinos/fisiología , Aceite de Coco , Digestión/fisiología , Ingestión de Alimentos/fisiología , Femenino , Fermentación/fisiología , Lactancia/metabolismo , Leche/química , Leche/metabolismo , Distribución Aleatoria , Rumen/metabolismo , Rumen/microbiología
10.
J Dairy Sci ; 92(10): 5167-77, 2009 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-19762835

RESUMEN

It has previously been established that supplementation of trans-10, cis-12 18:2 reduces milk fat content and fat deposition in several species. The objectives of the study were 1) to examine whether potential mechanisms by which trans-10, cis-12 18:2 is reported to affect lipid metabolism in adipose tissue of different species could be partly responsible for the inhibition in milk fat synthesis in lactating dairy cows; and 2) to investigate the effects of trans-10, cis-12 18:2 on the expression of a newly identified isoform of stearoyl-coenzyme A desaturase (SCD) in bovine mammary tissue. Four primiparous Holstein cows in established lactation, fitted with indwelling jugular catheters, were used in a balanced 2 x 2 crossover design. For the first 5 d of each period, cows were infused intravenously with a 15% lipid emulsion providing 10 g/d of either cis-9, cis-12 18:2 (control) or trans-10, cis-12 18:2 (conjugated linoleic acid; CLA). On d 5 of infusion, mammary gland biopsies were performed and tissues were analyzed for mRNA expression of acetyl-coenzyme A carboxylase, fatty acid synthetase, lipoprotein lipase, SCD1, SCD5, sterol regulatory element-binding protein-1, IL6, IL8, and tumor necrosis factor-alpha by real-time PCR. Compared with the control treatment, CLA reduced milk fat concentration and yield by 46 and 38%, respectively, and increased the trans-10, cis-12 18:2 content in milk fat from 0.05 to 3.54 mg/g. Milk yield, milk protein, and dry matter intake were unaffected by treatment. Infusion of the CLA treatment reduced the mRNA expression of acetyl-coenzyme A carboxylase and fatty acid synthetase by 46 and 57%, respectively, and tended to reduce the expression of SCD1 and lipoprotein lipase. Abundance of mRNA for sterol regulatory element-binding protein-1 was reduced by 59% in the CLA treatment group. However, infusing trans-10, cis-12 18:2 did not affect the expression of transcripts for SCD5, tumor necrosis factor-alpha, IL6, and IL8. Results from the current study corroborate the idea that effects of trans-10, cis-12 18:2 reported on adipose tissue in animal models and humans are not part of the response in the inhibition of milk fat synthesis in lactating dairy cows. They also support the hypothesis that SCD1 and SCD5 present important differences in their regulation and physiological roles.


Asunto(s)
Bovinos/metabolismo , Lactancia , Ácidos Linoleicos Conjugados/administración & dosificación , Metabolismo de los Lípidos/efectos de los fármacos , Glándulas Mamarias Animales/enzimología , Acetil-CoA Carboxilasa/genética , Tejido Adiposo/enzimología , Animales , Grasas/análisis , Ácido Graso Sintasas/genética , Ácidos Grasos/biosíntesis , Femenino , Expresión Génica/efectos de los fármacos , Infusiones Intravenosas/veterinaria , Isoenzimas/genética , Ácidos Linoleicos Conjugados/análisis , Metabolismo de los Lípidos/genética , Lipoproteína Lipasa/genética , Leche/química , ARN Mensajero/análisis , Estearoil-CoA Desaturasa/genética
11.
Lipids ; 40(5): 509-14, 2005 May.
Artículo en Inglés | MEDLINE | ID: mdl-16094861

RESUMEN

CLA, defined as one or more octadecadienoic acids (18:2) with conjugated double bonds, has been reported to be active in a number of biological systems. GC and silver ion HPLC (Ag(+)-HPLC) have been the primary techniques for identifying specific CLA isomers in both foods and biological extracts. Recently, GC relative retention times were reported for all c,c, c/t (c,t and tc), and t,t CLA FAME from the 6,8- to the 13,15-positions in octadecadienoic acid (18:2). Presented here is the relative retention order of the same CLA FAME using Ag(+)-HPLC with two different elution systems. The first elution system, consisting of 0.1% acetonitrile/0.5% diethyl ether (DE)/hexane, has been used previously to monitor CLA composition in foods. Also presented here is the retention order of CLA FAME using 2% acetic acid/hexane elution solvent, which has advantages of more stable retention volumes and a complementary elution order of CLA FAME isomers. The data are reported using retention volumes (RV) adjusted for toluene, an estimator for dead volume, and relative to c9,t11-18:2. Measurement of relative RV in the analysis of 88 samples of cow plasma, milk, and rumen fluids using Ag(+)-HPLC is also presented here. The % CV ranged from 1.04 to 1.62 for t,t isomers and from 0 to 0.48 for c/t isomers.


Asunto(s)
Cromatografía Líquida de Alta Presión/métodos , Ácidos Linoleicos Conjugados/aislamiento & purificación , Leche/química , Acetonitrilos , Animales , Líquidos Corporales/química , Bovinos , Éter , Isomerismo , Ácidos Linoleicos Conjugados/sangre , Reproducibilidad de los Resultados , Rumen/química , Plata
12.
Am J Physiol Regul Integr Comp Physiol ; 278(1): R179-84, 2000 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-10644637

RESUMEN

Conjugated linoleic acids (CLA) are octadecadienoic fatty acids that have profound effects on lipid metabolism. Our previous work showed that CLA (mixture of isomers) markedly reduced milk fat synthesis. In this study, our objective was to evaluate the effects of specific CLA isomers. Multiparous Holstein cows were used in a 3x3 Latin square design, and treatments were 4-day abomasal infusions of 1) skim milk (control), 2) 9,11 CLA supplement, and 3) 10,12 CLA supplement. CLA supplements provided 10 g/day of the specific CLA isomer (cis-9,trans-11 or trans-10,cis-12). Treatments had no effect on intake, milk yield, or milk protein yield. Only the 10,12 CLA supplement affected milk fat, causing a 42 and 44% reduction in milk fat percentage and yield, respectively. Milk fat composition revealed that de novo synthesized fatty acids were extensively reduced. Increases in ratios of C(14:0) to C(14:1) and C(18:0) to C(18:1) indicated the 10,12 CLA supplement also altered Delta(9)-desaturase. Treatments had minimal effects on plasma concentrations of glucose, nonesterified fatty acids, insulin, or insulin-like growth factor-I. Overall, results demonstrate that trans-10,cis-12 CLA is the isomer responsible for inhibition of milk fat synthesis.


Asunto(s)
Ácidos Grasos/antagonistas & inhibidores , Ácidos Linoleicos Conjugados , Ácidos Linoleicos/farmacología , Leche/metabolismo , Abomaso , Animales , Bovinos , Ácidos Grasos/biosíntesis , Ácidos Grasos/metabolismo , Femenino , Inyecciones , Estereoisomerismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA