Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Methods Mol Biol ; 2798: 213-221, 2024.
Artículo en Inglés | MEDLINE | ID: mdl-38587746

RESUMEN

Catalase, a pivotal enzyme in plant antioxidative defense mechanisms, plays a crucial role in detoxifying hydrogen peroxide, a reactive oxygen species (ROS). In this chapter, a comparative analysis of catalase activity was conducted using two distinct methodologies: spectrophotometry and non-denaturing polyacrylamide gel electrophoresis (PAGE). The spectrophotometric approach allowed the quantification of catalase activity by measuring the breakdown rate of hydrogen peroxide, while native PAGE enabled the separation and visualization of catalase isozymes, based on their native molecular weight and charge characteristics, and specific staining assay. Both methods provide valuable insights into catalase activity, offering complementary information on the enzyme's functional diversity and distribution within different plant tissues. This study integrates different techniques, previously described, to comprehensively elucidate the role of catalase in plant metabolism. Furthermore, it provides the possibility of obtaining a holistic understanding of antioxidant defense mechanisms by considering both total activity and isoenzyme distribution of catalase enzyme.


Asunto(s)
Antioxidantes , Peróxido de Hidrógeno , Catalasa , Electroforesis en Gel de Poliacrilamida Nativa , Espectrofotometría
2.
Front Plant Sci ; 14: 1116769, 2023.
Artículo en Inglés | MEDLINE | ID: mdl-36875580

RESUMEN

Lemongrass (Cymbopogon flexuosus) has great relevance considering the substantial commercial potential of its essential oil. Nevertheless, the increasing soil salinity poses an imminent threat to lemongrass cultivation given its moderate salt-sensitivity. For this, we used silicon nanoparticles (SiNPs) to stimulate salt tolerance in lemongrass considering SiNPs special relevance to stress settings. Five foliar sprays of SiNPs 150 mg L-1 were applied weekly to NaCl 160 and 240 mM-stressed plants. The data indicated that SiNPs minimised oxidative stress markers (lipid peroxidation, H2O2 content) while triggering a general activation of growth, photosynthetic performance, enzymatic antioxidant system including superoxide dismutase (SOD), catalase (CAT), and peroxidase (POD), and osmolyte proline (PRO). SiNPs amplified stomatal conductance and photosynthetic CO2 assimilation rate by about 24% and 21% in NaCl 160 mM-stressed plants. Associated benefits contributed to pronounced plant phenotype over their stressed counterparts, as we found. Foliar SiNPs sprays assuaged plant height by 30% and 64%, dry weight by 31% and 59%, and leaf area by 31% and 50% under NaCl 160 and 240 mM concentrations, respectively. SiNPs relieved enzymatic antioxidants (SOD, CAT, POD) and osmolyte (PRO) in lemongrass plants stressed with NaCl 160 mM (9%, 11%, 9%, and 12%, respectively) and NaCl 240 mM (13%, 18%, 15%, and 23%, respectively). The same treatment supported the oil biosynthesis improving essential oil content by 22% and 44% during 160 and 240 mM salt stress, respectively. We found SiNPs can completely overcome NaCl 160 mM stress while significantly palliating NaCl 240 mM stress. Thus, we propose that SiNPs can be a useful biotechnological tool to palliate salinity stress in lemongrass and related crops.

3.
Int J Mol Sci ; 23(10)2022 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-35628468

RESUMEN

H2S has acquired great attention in plant research because it has signaling functions under physiological and stress conditions. However, the direct detection of endogenous H2S and its potential emission is still a challenge in higher plants. In order to achieve a comparative analysis of the content of H2S among different plants with agronomical and nutritional interest including pepper fruits, broccoli, ginger, and different members of the genus Allium such as garlic, leek, Welsh and purple onion, the endogenous H2S and its emission was determined using an ion-selective microelectrode and a specific gas detector, respectively. The data show that endogenous H2S content range from pmol to µmol H2S · g-1 fresh weight whereas the H2S emission of fresh-cut vegetables was only detected in the different species of the genus Allium with a maximum of 9 ppm in garlic cloves. Additionally, the activity and isozymes of the L-cysteine desulfhydrase (LCD) were analyzed, which is one of the main enzymatic sources of H2S, where the different species of the genus Allium showed the highest activities. Using non-denaturing gel electrophoresis, the data indicated the presence of up to nine different LCD isozymes from one in ginger to four in onion, leek, and broccoli. In summary, the data indicate a correlation between higher LCD activity with the endogenous H2S content and its emission in the analyzed horticultural species. Furthermore, the high content of endogenous H2S in the Allium species supports the recognized benefits for human health, which are associated with its consumption.


Asunto(s)
Brassica , Ajo , Sulfuro de Hidrógeno , Cebollas , Zingiber officinale , Brassica/química , Cistationina gamma-Liasa , Ajo/química , Zingiber officinale/química , Sulfuro de Hidrógeno/análisis , Isoenzimas , Cebollas/química
4.
Int J Mol Sci ; 22(9)2021 Apr 25.
Artículo en Inglés | MEDLINE | ID: mdl-33922964

RESUMEN

Plant species are precursors of a wide variety of secondary metabolites that, besides being useful for themselves, can also be used by humans for their consumption and economic benefit. Pepper (Capsicum annuum L.) fruit is not only a common food and spice source, it also stands out for containing high amounts of antioxidants (such as vitamins C and A), polyphenols and capsaicinoids. Particular attention has been paid to capsaicin, whose anti-inflammatory, antiproliferative and analgesic activities have been reported in the literature. Due to the potential interest in pepper metabolites for human use, in this project, we carried out an investigation to identify new bioactive compounds of this crop. To achieve this, we applied a metabolomic approach, using an HPLC (high-performance liquid chromatography) separative technique coupled to metabolite identification by high resolution mass spectrometry (HRMS). After chromatographic analysis and data processing against metabolic databases, 12 differential bioactive compounds were identified in sweet pepper fruits, including quercetin and its derivatives, L-tryptophan, phytosphingosin, FAD, gingerglycolipid A, tetrahydropentoxylin, blumenol C glucoside, colnelenic acid and capsoside A. The abundance of these metabolites varied depending on the ripening stage of the fruits, either immature green or ripe red. We also studied the variation of these 12 metabolites upon treatment with exogenous nitric oxide (NO), a free radical gas involved in a good number of physiological processes in higher plants such as germination, growth, flowering, senescence, and fruit ripening, among others. Overall, it was found that the content of the analyzed metabolites depended on the ripening stage and on the presence of NO. The metabolic pattern followed by quercetin and its derivatives, as a consequence of the ripening stage and NO treatment, was also corroborated by transcriptomic analysis of genes involved in the synthesis of these compounds. This opens new research perspectives on the pepper fruit's bioactive compounds with nutraceutical potentiality, where biotechnological strategies can be applied for optimizing the level of these beneficial compounds.


Asunto(s)
Capsicum/química , Capsicum/metabolismo , Óxido Nítrico/farmacología , Capsicum/efectos de los fármacos , Capsicum/crecimiento & desarrollo , Carbolinas/análisis , Carbolinas/metabolismo , Cromatografía Líquida de Alta Presión , Flavina-Adenina Dinucleótido/análisis , Flavina-Adenina Dinucleótido/metabolismo , Frutas/química , Frutas/efectos de los fármacos , Frutas/crecimiento & desarrollo , Frutas/metabolismo , Humanos , Espectrometría de Masas/métodos , Metabolómica/métodos , Quercetina/análisis , Quercetina/metabolismo , Quercetina/farmacología , Esfingosina/análogos & derivados , Esfingosina/análisis , Esfingosina/metabolismo , Triptófano/análisis , Triptófano/metabolismo
5.
J Exp Bot ; 72(3): 941-958, 2021 02 11.
Artículo en Inglés | MEDLINE | ID: mdl-33165620

RESUMEN

Nitric oxide (NO) has been implicated as part of the ripening regulatory network in fleshy fruits. However, very little is known about the simultaneous action of NO on the network of regulatory events and metabolic reactions behind ripening-related changes in fruit color, taste, aroma and nutritional value. Here, we performed an in-depth characterization of the concomitant changes in tomato (Solanum lycopersicum) fruit transcriptome and metabolome associated with the delayed-ripening phenotype caused by NO supplementation at the pre-climacteric stage. Approximately one-third of the fruit transcriptome was altered in response to NO, including a multilevel down-regulation of ripening regulatory genes, which in turn restricted the production and tissue sensitivity to ethylene. NO also repressed hydrogen peroxide-scavenging enzymes, intensifying nitro-oxidative stress and S-nitrosation and nitration events throughout ripening. Carotenoid, tocopherol, flavonoid and ascorbate biosynthesis were differentially affected by NO, resulting in overaccumulation of ascorbate (25%) and flavonoids (60%), and impaired lycopene production. In contrast, the biosynthesis of compounds related to tomato taste (sugars, organic acids, amino acids) and aroma (volatiles) was slightly affected by NO. Our findings indicate that NO triggers extensive transcriptional and metabolic rewiring at the early ripening stage, modifying tomato antioxidant composition with minimal impact on fruit taste and aroma.


Asunto(s)
Frutas/fisiología , Óxido Nítrico/fisiología , Solanum lycopersicum/fisiología , Etilenos , Regulación de la Expresión Génica de las Plantas , Fenotipo
6.
J Hazard Mater ; 405: 124250, 2021 03 05.
Artículo en Inglés | MEDLINE | ID: mdl-33109410

RESUMEN

Metalloids are among the major pollutants posing a risk to the environment and global food security. Plant roots uptake these toxic metalloids from the soil along with other essential minerals. Plants respond to metalloid stress by regulating the distribution and levels of various endogenous phytohormones. Recent research showed that auxin is instrumental in mediating resilience to metalloid-induced stress in plants. Exogenous supplementation of the auxin or plant growth-promoting micro-organisms (PGPMs) alleviates metalloid uptake, localization, and accumulation in the plant tissues, thereby improving plant growth under metalloid stress. Moreover, auxin triggers various biological responses such as the production of enzymatic and non-enzymatic antioxidants to combat nitro-oxidative stress induced by the metalloids. However, an in-depth understanding of the auxin stimulated molecular and physiological responses to the metalloid toxicity needs to be investigated in future studies. The current review attempts to provide an update on the recent advances and the current state-of-the-art associated with auxin and metalloid interaction, which could be used as a start point to develop biotechnological tools and create an eco-friendly environment.


Asunto(s)
Metaloides , Ácidos Indolacéticos , Redes y Vías Metabólicas , Plantas , Suelo
7.
Plant Physiol Biochem ; 157: 244-255, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33152643

RESUMEN

The present study aims to analyse the potential crosstalk between nitric oxide (NO) and hydrogen sulfide (H2S) in triggering resilience of maize (Zea mays L.) seedlings to hexavalent chromium (Cr VI). Exogenous application of 500 µM sodium nitroprusside (SNP, as a NO donor) or sodium hydrosulfide (NaHS, as a H2S donor) to 9-day-old maize seedlings, countered a Cr (200 µM) -elicited reduction in embryonic axis biomass. Cr caused cellular membrane injury by enhancing the levels of superoxide and hydroxyl radicals as well as methylglyoxal, and 4-hydroxy-2-nonenal. The application of SNP or NaHS considerably improved the endogenous NO and H2S pool, decreased oxidative stress and lipid peroxidation by suppressing lipoxygenase activity and improving some antioxidant enzymes activities in radicles and epicotyls. Radicles were more affected than epicotyls by Cr-stress with enhanced electrolyte leakage and decreased proton extrusion as indicated by lesser H+-ATPase activity. H2S appeared to mitigate Cr toxicity through up-regulated H+-ATPase and glyoxalase pathways and by maintaining optimal GSH levels as downstream effects of ROS and MG suppression. Hence, H2S-mediated the regeneration of GSH pool is associated with the attenuation of MG toxicity by enhancing S-lactoglutathione and D-lactate production. Taken together, our results indicate complementary roles for H2S and GSH to strengthen membrane integrity against Cr stress in maize seedlings.


Asunto(s)
Cromo/toxicidad , Sulfuro de Hidrógeno , Óxido Nítrico/farmacología , Piruvaldehído/toxicidad , Plantones/efectos de los fármacos , Zea mays/efectos de los fármacos , Membrana Celular/efectos de los fármacos , Glutatión/metabolismo , Sulfuro de Hidrógeno/farmacología , ATPasas de Translocación de Protón/metabolismo , Especies Reactivas de Oxígeno/metabolismo
8.
J Plant Physiol ; 211: 27-35, 2017 Apr.
Artículo en Inglés | MEDLINE | ID: mdl-28142094

RESUMEN

Arsenic (As) contamination is a major environmental problem which affects most living organisms from plants to animals. This metalloid poses a health risk for humans through its accumulation in crops and water. Using garlic (Allium sativum L.) plants as model crop exposed to 200µM arsenate, a comparative study among their main organs (roots and shoots) was made. The analysis of arsenic, glutathione (GSH), phytochelatins (PCs) and lipid peroxidation contents with the activities of antioxidant enzymes (catalase, superoxide dismutase, ascorbate-glutathione cycle), and the main components of the NADPH-generating system, including glucose-6-phosphate dehydrogenase (G6PDH), 6-phosphogluconate dehydrogenase (6PGDH), NADP-malic enzyme (NADP-ME) and NADP-isocitrate dehydrogenase (NADP-ICDH) was carried out. Data showed a correlation among arsenic accumulation in the different organs, PCs content and the antioxidative response, with a general decline of the NADPH-generating systems in roots. Overall, our results demonstrate that there are clear connections between arsenic uptake, increase of their As-chelating capacity in roots and a decline of antioxidative enzyme activities (catalase and the ascorbate peroxidase) whose alteration provoked As-induced oxidative stress. Thus, the data suggest that roots act as barrier of arsenic mediated by a prominent sulfur metabolism which is characterized by the biosynthesis of high amount of PCs.


Asunto(s)
Arsénico/toxicidad , NADP/metabolismo , Especificidad de Órganos/efectos de los fármacos , Raíces de Plantas/metabolismo , Estrés Fisiológico/efectos de los fármacos , Azufre/metabolismo , Antioxidantes/metabolismo , Ácido Ascórbico/metabolismo , Ajo/efectos de los fármacos , Ajo/enzimología , Ajo/crecimiento & desarrollo , Ajo/fisiología , Glutatión/metabolismo , Peroxidación de Lípido/efectos de los fármacos , Estrés Oxidativo/efectos de los fármacos , Oxidorreductasas/metabolismo , Fenotipo , Fitoquelatinas/metabolismo , Raíces de Plantas/efectos de los fármacos , Brotes de la Planta/efectos de los fármacos , Brotes de la Planta/metabolismo
9.
Bio Protoc ; 7(14): e2399, 2017 Jul 20.
Artículo en Inglés | MEDLINE | ID: mdl-34541131

RESUMEN

6-Phosphogluconate dehydrogenase (6PGDH; EC 1.1.1.44) catalyzes the third and irreversible reaction of the pentose phosphate pathway (PPP). It carries out the oxidative decarboxylation of the 6-phosphogluconate to yield ribulose-5-phosphate, carbon dioxide and NADPH. In higher plants, 6PGDH has several subcellular localizations including cytosol, chloroplast, mitochondria and peroxisomes ( Corpas et al., 1998 ; Krepinsky et al., 2001 ; Mateos et al., 2009 ; Fernández-Fernández and Corpas, 2016; Hölscher et al., 2016 ). Using Arabidopsis thaliana as plant model and sweet pepper (Capsicum annuum L.) fruits as a plant with agronomical interest, this protocol illustrates how to prepare the plant extracts for the separation of the potential 6PGDH isoforms by electrophoresis on 6% polyacrylamide non-denaturing gels. Thus, this method allows detecting three 6PGDH isoforms in Arabidopsis seedlings and two 6PGDH isoforms in sweet pepper fruits.

10.
Plant Sci ; 201-202: 137-46, 2013 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-23352412

RESUMEN

Water stress is one of the most severe problems for plant growth and productivity. Using the legume Lotus japonicus exposed to water stress, a comparative analysis of key components in metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were made. After water stress treatment plants accumulated proline 23 and 10-fold in roots and leaves respectively, compared with well-watered plants. Significant changes in metabolism of RNS and ROS were observed, with an increase in both protein tyrosine nitration and lipid peroxidation, which indicate that water stress induces a nitro-oxidative stress. In roots, ·NO content was increased and S-nitrosoglutathione reductase activity was reduced by 23%, wherein a specific protein nitration pattern was observed. As part of this response, activity of NADPH-generating dehydrogenases was also affected in roots resulting in an increase of the NADPH/NADP(+) ratio. Our results suggest that in comparison with leaves, roots are significantly affected by water stress inducing an increase in proline and NO content which could highlight multiple functions for these metabolites in water stress adaptation, recovery and signaling. Thus, it is proposed that water stress generates a spatial distribution of nitro-oxidative stress with the oxidative stress component being higher in leaves whereas the nitrosative stress component is higher in roots.


Asunto(s)
Lotus/metabolismo , Estrés Oxidativo , Hojas de la Planta/metabolismo , Raíces de Plantas/metabolismo , Agua/metabolismo , Aldehído Oxidorreductasas/metabolismo , Western Blotting , Deshidratación , Activación Enzimática , Pruebas de Enzimas , Peróxido de Hidrógeno/metabolismo , Peroxidación de Lípido , Lotus/enzimología , Lotus/fisiología , NADP/metabolismo , NADPH Deshidrogenasa/metabolismo , Óxido Nítrico/metabolismo , Fenotipo , Extractos Vegetales/análisis , Extractos Vegetales/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/fisiología , Raíces de Plantas/enzimología , Raíces de Plantas/fisiología , Prolina/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo
11.
Plant Cell Environ ; 35(2): 281-95, 2012 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-21414013

RESUMEN

Low temperature is an environmental stress that affects crop production and quality and regulates the expression of many genes, and the level of a number of proteins and metabolites. Using leaves from pepper (Capsicum annum L.) plants exposed to low temperature (8 °C) for different time periods (1 to 3 d), several key components of the metabolism of reactive nitrogen and oxygen species (RNS and ROS, respectively) were analysed. After 24 h of exposure at 8 °C, pepper plants exhibited visible symptoms characterized by flaccidity of stems and leaves. This was accompanied by significant changes in the metabolism of RNS and ROS with an increase of both protein tyrosine nitration (NO(2) -Tyr) and lipid peroxidation, indicating that low temperature induces nitrosative and oxidative stress. During the second and third days at low temperature, pepper plants underwent cold acclimation by adjusting their antioxidant metabolism and reverting the observed nitrosative and oxidative stress. In this process, the levels of the soluble non-enzymatic antioxidants ascorbate and glutathione, and the activity of the main NADPH-generating dehydrogenases were significantly induced. This suggests that ascorbate, glutathione and the NADPH-generating dehydrogenases have a role in the process of cold acclimation through their effect on the redox state of the cell.


Asunto(s)
Antioxidantes/metabolismo , Capsicum/fisiología , NADPH Deshidrogenasa/metabolismo , Especies de Nitrógeno Reactivo/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Estrés Fisiológico/fisiología , Aclimatación , Ácido Ascórbico/metabolismo , Capsicum/enzimología , Capsicum/genética , Frío , Glutatión/metabolismo , Homeostasis , Peroxidación de Lípido , Oxidación-Reducción , Fenotipo , Extractos Vegetales/aislamiento & purificación , Extractos Vegetales/metabolismo , Hojas de la Planta/enzimología , Hojas de la Planta/genética , Hojas de la Planta/fisiología , Proteínas de Plantas/metabolismo , Tallos de la Planta/fisiología , Factores de Tiempo
12.
Free Radic Res ; 41(2): 191-9, 2007 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-17364945

RESUMEN

NADPH is an essential electron donor in numerous biosynthetic and detoxification reactions. In animal, yeast and bacteria, the NADP-dependent isocitrate dehydrogenase (NADP-ICDH), which catalyzes the production of NADPH, is being recognized as an essential component of the antioxidative defence mechanisms. In plant cells, there is little information on the antioxidant properties of NADP-ICDH. Using a pea cDNA lambdagt11 library, the full-length cDNA of a NADP-ICDH was obtained. In pea leaves, the analyses of activity, protein and transcript expression of NADP-ICDH under six different abiotic stress conditions (CL, continuous light, HLI, high light intensity, D, continuous dark, LT, low-temperature HT, high-temperature and W, mechanical wounding) revealed a differential regulation at transcriptional and post-translational level depending on the abiotic stress. The activity and protein expression of NADP-ICDH and catalase increased only under HLI but the NADP-ICDH transcripts were up-regulated by cold stress (70%) and W (40%). Under the same conditions, the transcript analysis of glutathione reductase (GR), monodehydroascorbate reductase (MDAR) and ascorbate peroxidase (APX), key components of the antioxidative ascorbate-glutathione cycle, showed similar inductions. These data indicate that in pea plants the cytosolic NADP-ICDH shows a differential response, at mRNA and activity level, depending on the type of abiotic stress and suggests that this dehydrogenase could have a protective antioxidant role against certain environmental stresses in plants.


Asunto(s)
Citosol/enzimología , Isocitrato Deshidrogenasa/genética , Pisum sativum/enzimología , Proteínas de Plantas/genética , Ascorbato Peroxidasas , Catalasa/análisis , Frío , ADN Complementario/genética , ADN de Plantas/genética , Relación Dosis-Respuesta en la Radiación , Inducción Enzimática/efectos de la radiación , Regulación de la Expresión Génica de las Plantas/efectos de la radiación , Glutatión Reductasa/biosíntesis , Glutatión Reductasa/genética , Calor , Isocitrato Deshidrogenasa/química , Isocitrato Deshidrogenasa/fisiología , Luz , Datos de Secuencia Molecular , NADH NADPH Oxidorreductasas/biosíntesis , NADH NADPH Oxidorreductasas/genética , Pisum sativum/genética , Pisum sativum/efectos de la radiación , Peroxidasas/biosíntesis , Peroxidasas/genética , Hojas de la Planta/enzimología , Hojas de la Planta/efectos de la radiación , Proteínas de Plantas/química , Proteínas de Plantas/fisiología , ARN Mensajero/biosíntesis , ARN de Planta/biosíntesis , Estrés Mecánico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA