Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
1.
Sci Rep ; 8(1): 3474, 2018 02 22.
Artículo en Inglés | MEDLINE | ID: mdl-29472563

RESUMEN

Previous work using non-invasive radiofrequency field treatment (RFT) in cancer has demonstrated its therapeutic potential as it can increase intratumoral blood perfusion, localization of intravenously delivered drugs, and promote a hyperthermic intratumoral state. Despite the well-known immunologic benefits that febrile hyperthermia can induce, an investigation of how RFT could modulate the intra-tumoral immune microenvironment had not been studied. Thus, using an established 4T1 breast cancer model in immune competent mice, we demonstrate that RFT induces a transient, localized, and T-cell dependent intratumoral inflammatory response. More specifically we show that multi- and singlet-dose RFT promote an increase in tumor volume in immune competent Balb/c mice, which does not occur in athymic nude models. Further leukocyte subset analysis at 24, 48, and 120 hours after a single RFT show a rapid increase in tumoral trafficking of CD4+ and CD8+ T-cells 24 hours post-treatment. Additional serum cytokine analysis reveals an increase in numerous pro-inflammatory cytokines and chemokines associated with enhanced T-cell trafficking. Overall, these data demonstrate that non-invasive RFT could be an effective immunomodulatory strategy in solid tumors, especially for enhancing the tumoral trafficking of lymphocytes, which is currently a major hindrance of numerous cancer immunotherapeutic strategies.


Asunto(s)
Neoplasias de la Mama/radioterapia , Neoplasias Mamarias Experimentales/radioterapia , Terapia por Radiofrecuencia , Linfocitos T/efectos de la radiación , Animales , Neoplasias de la Mama/sangre , Neoplasias de la Mama/inmunología , Neoplasias de la Mama/patología , Linfocitos T CD4-Positivos/inmunología , Linfocitos T CD4-Positivos/efectos de la radiación , Linfocitos T CD8-positivos/inmunología , Linfocitos T CD8-positivos/efectos de la radiación , Citocinas/sangre , Femenino , Humanos , Hipertermia Inducida , Neoplasias Mamarias Experimentales/inmunología , Neoplasias Mamarias Experimentales/patología , Ratones , Linfocitos T/inmunología
2.
Sci Rep ; 7(1): 11299, 2017 09 12.
Artículo en Inglés | MEDLINE | ID: mdl-28900126

RESUMEN

Surgical margin status in cancer surgery represents an important oncologic parameter affecting overall prognosis. The risk of disease recurrence is minimized and survival often prolonged if margin-negative resection can be accomplished during cancer surgery. Unfortunately, negative margins are not always surgically achievable due to tumor invasion into adjacent tissues or involvement of critical vasculature. Herein, we present a novel intra-operative device created to facilitate a uniform and mild heating profile to cause hyperthermic destruction of vessel-encasing tumors while safeguarding the encased vessel. We use pancreatic ductal adenocarcinoma as an in vitro and an in vivo cancer model for these studies as it is a representative model of a tumor that commonly involves major mesenteric vessels. In vitro data suggests that mild hyperthermia (41-46 °C for ten minutes) is an optimal thermal dose to induce high levels of cancer cell death, alter cancer cell's proteomic profiles and eliminate cancer stem cells while preserving non-malignant cells. In vivo and in silico data supports the well-known phenomena of a vascular heat sink effect that causes high temperature differentials through tissues undergoing hyperthermia, however temperatures can be predicted and used as a tool for the surgeon to adjust thermal doses delivered for various tumor margins.


Asunto(s)
Hipertermia Inducida , Neoplasias/patología , Neoplasias/terapia , Neovascularización Patológica/terapia , Animales , Carcinoma Ductal Pancreático/patología , Carcinoma Ductal Pancreático/terapia , Línea Celular Tumoral , Supervivencia Celular , Terapia Combinada , Modelos Animales de Enfermedad , Células Endoteliales/metabolismo , Femenino , Humanos , Hipertermia Inducida/instrumentación , Hipertermia Inducida/métodos , Ratones , Neoplasias/cirugía , Células Madre Neoplásicas/metabolismo , Neovascularización Patológica/cirugía , Neoplasias Pancreáticas/patología , Neoplasias Pancreáticas/terapia , Células Estrelladas Pancreáticas/metabolismo , Porcinos , Resultado del Tratamiento , Ensayos Antitumor por Modelo de Xenoinjerto , Neoplasias Pancreáticas
3.
J Control Release ; 260: 92-99, 2017 08 28.
Artículo en Inglés | MEDLINE | ID: mdl-28527736

RESUMEN

The aim of this study is to understand the combined and differential biokinetic effects of radiofrequency (RF) electric-field hyperthermia as an adjunctive therapy to [60]fullerene nanoparticle-based drug delivery systems in targeting the micro-vasculature and micro-environments of breast cancer tumors. Intravital microscopy (IVM) is an ideal tool to provide the spatial and temporal resolution needed for quantification in this investigation. The water-soluble and fluorescent [60]fullerene derivative (C60-serPF) was designed to be an amphiphilic nanostructure, which is able to cross several biological membranes and accumulate in tumor tissues by passing through abnormally leaky tumor blood vessels. To elucidate the coupled effects of the highly permeable, but heterogeneous tumor vasculature, with the permeabilizing effects of mild (40-42°C) hyperthermia produced by a local RF field, we controlled variables across tumor and non-tumor mammary gland microvasculature with and without application of RF hyperthermia in each condition. We notice that tumor tissue is characterized by more intense drug extravasation than in contralateral mammary fat pad tissue, which is consistent with enhanced permeability and retention (EPR) effects. The analysis of a permeability parameter (Papp), C60-serPF velocity, and the time of compound influx into the intra- and extra-vascular space suggest that mild RF hyperthermia can improve nanoparticle delivery into tumor tissue.


Asunto(s)
Adenocarcinoma/metabolismo , Fulerenos/administración & dosificación , Hipertermia Inducida , Neoplasias Mamarias Experimentales/metabolismo , Animales , Transporte Biológico , Línea Celular Tumoral , Terapia Combinada , Sistemas de Liberación de Medicamentos , Femenino , Fulerenos/farmacocinética , Ratones Endogámicos BALB C , Ratones Desnudos , Distribución Tisular
4.
Sci Rep ; 7: 43961, 2017 03 13.
Artículo en Inglés | MEDLINE | ID: mdl-28287120

RESUMEN

Interactions of high-frequency radio waves (RF) with biological tissues are currently being investigated as a therapeutic platform for non-invasive cancer hyperthermia therapy. RF delivers thermal energy into tissues, which increases intra-tumoral drug perfusion and blood-flow. Herein, we describe an optical-based method to optimize the short-term treatment schedules of drug and hyperthermia administration in a 4T1 breast cancer model via RF, with the aim of maximizing drug localization and homogenous distribution within the tumor microenvironment. This method, based on the analysis of fluorescent dyes localized into the tumor, is more time, cost and resource efficient, when compared to current analytical methods for tumor-targeting drug analysis such as HPLC and LC-MS. Alexa-Albumin 647 nm fluorphore was chosen as a surrogate for nab-paclitaxel based on its similar molecular weight and albumin driven pharmacokinetics. We found that RF hyperthermia induced a 30-40% increase in Alexa-Albumin into the tumor micro-environment 24 h after treatment when compared to non-heat treated mice. Additionally, we showed that the RF method of delivering hyperthermia to tumors was more localized and uniform across the tumor mass when compared to other methods of heating. Lastly, we provided insight into some of the factors that influence the delivery of RF hyperthermia to tumors.


Asunto(s)
Antineoplásicos/farmacocinética , Neoplasias de la Mama/terapia , Quimioterapia/métodos , Hipertermia Inducida/métodos , Ondas de Radio , Animales , Antineoplásicos/administración & dosificación , Modelos Animales de Enfermedad , Ratones , Imagen Óptica , Coloración y Etiquetado
5.
Chem Commun (Camb) ; 52(85): 12630-12633, 2016 Oct 18.
Artículo en Inglés | MEDLINE | ID: mdl-27722511

RESUMEN

For potential applications in nano-mediated radiofrequency cancer hyperthermia, the nanomaterial under investigation must increase the heating of any aqueous solution in which it is suspended when exposed to radiofrequency electric fields. This should also be true for a broad range of solution conductivities, especially those that artificially mimic the ionic environment of biological systems. Herein we demonstrate enhanced heating of biologically relevant aqueous solutions using kosmotropes and a hexamalonoserinolamide fullerene.


Asunto(s)
Ablación por Catéter , Fulerenos/química , Hipertermia Inducida , Nanoestructuras/química , Agua/química , Humanos
6.
PLoS One ; 10(8): e0136382, 2015.
Artículo en Inglés | MEDLINE | ID: mdl-26308617

RESUMEN

Herein, we present a novel imaging platform to study the biological effects of non-invasive radiofrequency (RF) electric field cancer hyperthermia. This system allows for real-time in vivo intravital microscopy (IVM) imaging of radiofrequency-induced biological alterations such as changes in vessel structure and drug perfusion. Our results indicate that the IVM system is able to handle exposure to high-power electric-fields without inducing significant hardware damage or imaging artifacts. Furthermore, short durations of low-power (< 200 W) radiofrequency exposure increased transport and perfusion of fluorescent tracers into the tumors at temperatures below 41°C. Vessel deformations and blood coagulation were seen for tumor temperatures around 44°C. These results highlight the use of our integrated IVM-RF imaging platform as a powerful new tool to visualize the dynamics and interplay between radiofrequency energy and biological tissues, organs, and tumors.


Asunto(s)
Diagnóstico por Imagen , Hipertermia Inducida , Microscopía Intravital/métodos , Neoplasias Mamarias Animales/patología , Ondas de Radio , Algoritmos , Animales , Femenino , Técnica del Anticuerpo Fluorescente , Colorantes Fluorescentes/farmacocinética , Neoplasias Mamarias Animales/terapia , Ratones , Distribución Tisular
7.
Bioconjug Chem ; 26(1): 39-50, 2015 Jan 21.
Artículo en Inglés | MEDLINE | ID: mdl-25496453

RESUMEN

As the number of diagnostic and therapeutic applications utilizing gold nanoparticles (AuNPs) increases, so does the need for AuNPs that are stable in vivo, biocompatible, and suitable for bioconjugation. We investigated a strategy for AuNP stabilization that uses methoxypolyethylene glycol-graft-poly(l-lysine) copolymer (MPEG-gPLL) bearing free amino groups as a stabilizing molecule. MPEG-gPLL injected into water solutions of HAuCl4 with or without trisodium citrate resulted in spherical (Zav = 36 nm), monodisperse (PDI = 0.27), weakly positively charged nanoparticles (AuNP3) with electron-dense cores (diameter: 10.4 ± 2.5 nm) and surface amino groups that were amenable to covalent modification. The AuNP3 were stable against aggregation in the presence of phosphate and serum proteins and remained dispersed after their uptake into endosomes. MPEG-gPLL-stabilized AuNP3 exhibited high uptake and very low toxicity in human endothelial cells, but showed a high dose-dependent toxicity in epithelioid cancer cells. Highly stable radioactive labeling of AuNP3 with (99m)Tc allowed imaging of AuNP3 biodistribution and revealed dose-dependent long circulation in the blood. The minor fraction of AuGNP3 was found in major organs and at sites of experimentally induced inflammation. Gold analysis showed evidence of a partial degradation of the MPEG-gPLL layer in AuNP3 particles accumulated in major organs. Radiofrequency-mediated heating of AuNP3 solutions showed that AuNP3 exhibited heating behavior consistent with 10 nm core nanoparticles. We conclude that PEG-pPLL coating of AuNPs confers "stealth" properties that enable these particles to exist in vivo in a nonaggregating, biocompatible state making them suitable for potential use in biomedical applications such as noninvasive radiofrequency cancer therapy.


Asunto(s)
Oro/química , Nanopartículas del Metal/química , Polietilenglicoles/química , Polilisina/análogos & derivados , Técnicas de Ablación , Animales , Línea Celular Tumoral , Técnicas de Química Sintética , Estabilidad de Medicamentos , Femenino , Oro/farmacocinética , Oro/uso terapéutico , Humanos , Ligandos , Ratones , Polilisina/química , Ondas de Radio , Distribución Tisular , Tomografía Computarizada de Emisión de Fotón Único , Tomografía Computarizada por Rayos X
8.
J Natl Cancer Inst ; 106(8)2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-25128695

RESUMEN

BACKGROUND: Gemcitabine is a potent nucleoside analogue against solid tumors, but development of drug resistance is a substantial problem. Removal of gemcitabine incorporated into DNA by repair mechanisms may contribute to resistance in chemo-refractory solid tumors. Human hepatocellular carcinoma (HCC) is usually very chemoresistant to gemcitabine. METHODS: We treated HCC in vitro and in vivo (orthotopic murine model with human Hep3B or HepG2 xenografts, 7-10 CB17SCID mice per group) with gemcitabine. The role of homologous recombination repair proteins in repairing stalled replication forks was evaluated with hyperthermia exposure and cell-cycle analysis. The Student t-test was used for two-sample comparisons. Multiple group data were analyzed using one-way analysis of variance. All statistical tests were two-sided. RESULTS: We demonstrated that Mre11-mediated homologous recombination repair of gemcitabine-stalled replication forks is crucial to survival of HCC cells. Furthermore, we demonstrated inhibition of Mre11 by an exonuclease inhibitor or concomitant hyperthermia. In orthotopic murine models of chemoresistant HCC, the Hep3B tumor mass with radiofrequency plus gemcitabine treatment (mean ± SD, 180±91mg) was statistically significantly smaller compared with gemcitabine alone (661±419mg, P = .0063). CONCLUSIONS: This study provides mechanistic understanding of homologous recombination inhibiting-strategies, such as noninvasive radiofrequency field-induced hyperthermia, to overcome resistance to gemcitabine in refractory human solid tumors.


Asunto(s)
Antimetabolitos Antineoplásicos/farmacología , Carcinoma Hepatocelular/terapia , Replicación del ADN/efectos de los fármacos , ADN de Neoplasias/efectos de los fármacos , Proteínas de Unión al ADN/antagonistas & inhibidores , Desoxicitidina/análogos & derivados , Hipertermia Inducida/métodos , Neoplasias Hepáticas/terapia , Ondas de Radio , Reparación del ADN por Recombinación/efectos de los fármacos , Animales , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/genética , Ciclo Celular/efectos de los fármacos , Ciclo Celular/genética , Supervivencia Celular/efectos de los fármacos , Supervivencia Celular/genética , Replicación del ADN/genética , ADN de Neoplasias/genética , Desoxicitidina/farmacología , Modelos Animales de Enfermedad , Resistencia a Antineoplásicos , Exonucleasas/antagonistas & inhibidores , Humanos , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/genética , Proteína Homóloga de MRE11 , Ratones , Ratones SCID , Neoplasias Experimentales/terapia , Terapia por Radiofrecuencia , Gemcitabina
9.
Nanomedicine ; 10(6): 1121-30, 2014 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-24650884

RESUMEN

Hepatocellular carcinoma (HCC) is one of the most lethal and chemo-refractory cancers, clearly, alternative treatment strategies are needed. We utilized 10nm gold nanoparticles as a scaffold to synthesize nanoconjugates bearing a targeting antibody (cetuximab, C225) and gemcitabine. Loading efficiency of gemcitabine on the gold nanoconjugates was 30%. Targeted gold nanoconjugates in combination with RF were selectively cytotoxic to EGFR expressing Hep3B and SNU449 cells when compared to isotype particles with/without RF (P<0.05). In animal experiments, targeted gold nanoconjugates halted the growth of subcutaneous Hep3B xenografts in combination with RF exposure (P<0.05). These xenografts also demonstrated increased apoptosis, necrosis and decreased proliferation compared to controls. Normal tissues were unharmed. We have demonstrated that non-invasive RF-induced hyperthermia when combined with targeted delivery of gemcitabine is more effective and safe at dosages ~275-fold lower than the current clinically-delivered systemic dose of gemcitabine. FROM THE CLINICAL EDITOR: In a model of hepatocellular carcinoma, the authors demonstrate that non-invasive RF-induced hyperthermia applied with cetuximab targeted delivery of Au NP-gemcitabine conjugate is more effective and safe at dosages ~ 275-fold lower than the current clinically-used systemic dose of gemcitabine.


Asunto(s)
Anticuerpos Monoclonales Humanizados/uso terapéutico , Carcinoma Hepatocelular/terapia , Desoxicitidina/análogos & derivados , Oro/uso terapéutico , Neoplasias Hepáticas/terapia , Nanoconjugados/uso terapéutico , Animales , Anticuerpos Monoclonales Humanizados/química , Carcinoma Hepatocelular/tratamiento farmacológico , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Cetuximab , Desoxicitidina/química , Desoxicitidina/uso terapéutico , Sistemas de Liberación de Medicamentos , Oro/química , Humanos , Hipertermia Inducida , Hígado/efectos de los fármacos , Hígado/patología , Neoplasias Hepáticas/tratamiento farmacológico , Neoplasias Hepáticas/patología , Nanopartículas del Metal/química , Nanopartículas del Metal/uso terapéutico , Ratones Endogámicos BALB C , Nanoconjugados/química , Gemcitabina
10.
J Vis Exp ; (78)2013 Aug 28.
Artículo en Inglés | MEDLINE | ID: mdl-24022384

RESUMEN

Cancer therapies which are less toxic and invasive than their existing counterparts are highly desirable. The use of RF electric-fields that penetrate deep into the body, causing minimal toxicity, are currently being studied as a viable means of non-invasive cancer therapy. It is envisioned that the interactions of RF energy with internalized nanoparticles (NPs) can liberate heat which can then cause overheating (hyperthermia) of the cell, ultimately ending in cell necrosis. In the case of non-biological systems, we present detailed protocols relating to quantifying the heat liberated by highly-concentrated NP colloids. For biological systems, in the case of in vitro experiments, we describe the techniques and conditions which must be adhered to in order to effectively expose cancer cells to RF energy without bulk media heating artifacts significantly obscuring the data. Finally, we give a detailed methodology for in vivo mouse models with ectopic hepatic cancer tumors.


Asunto(s)
Coloides/administración & dosificación , Diatermia/métodos , Oro/administración & dosificación , Hipertermia Inducida/métodos , Neoplasias Hepáticas/terapia , Nanopartículas del Metal/administración & dosificación , Animales , Línea Celular Tumoral , Coloides/química , Diatermia/instrumentación , Oro/química , Humanos , Hipertermia Inducida/instrumentación , Nanopartículas del Metal/química , Ratones , Ratones Endogámicos BALB C , Ratones Desnudos , Ensayos Antitumor por Modelo de Xenoinjerto
11.
PLoS One ; 8(7): e68506, 2013.
Artículo en Inglés | MEDLINE | ID: mdl-23861912

RESUMEN

There is a renewed interest in developing high-intensity short wave capacitively-coupled radiofrequency (RF) electric-fields for nanoparticle-mediated tumor-targeted hyperthermia. However, the direct thermal effects of such high-intensity electric-fields (13.56 MHZ, 600 W) on normal and tumor tissues are not completely understood. In this study, we investigate the heating behavior and dielectric properties of normal mouse tissues and orthotopically-implanted human hepatocellular and pancreatic carcinoma xenografts. We note tumor-selective hyperthermia (relative to normal mouse tissues) in implanted xenografts that can be explained on the basis of differential dielectric properties. Furthermore, we demonstrate that repeated RF exposure of tumor-bearing mice can result in significant anti-tumor effects compared to control groups without detectable harm to normal mouse tissues.


Asunto(s)
Carcinoma Hepatocelular/terapia , Hipertermia Inducida/métodos , Neoplasias Hepáticas Experimentales/terapia , Nanopartículas/uso terapéutico , Neoplasias Pancreáticas/terapia , Animales , Carcinoma Hepatocelular/patología , Línea Celular Tumoral , Electricidad , Campos Electromagnéticos , Radiación Electromagnética , Femenino , Humanos , Hipertermia Inducida/instrumentación , Neoplasias Hepáticas Experimentales/patología , Ratones , Ratones SCID , Nanopartículas/química , Especificidad de Órganos , Neoplasias Pancreáticas/patología , Trasplante Heterólogo , Neoplasias Pancreáticas
12.
Nanomedicine ; 8(7): 1096-105, 2012 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-22349096

RESUMEN

The use of noninvasive radiofrequency (RF) electric fields as an energy source for thermal activation of nanoparticles within cancer cells could be a valuable addition to the emerging field of nano-mediated cancer therapies. Based on investigations of cell death through hyperthermia, and offering the ability for total-body penetration by RF fields, this technique is thought to complement and possibly outperform existing nano-heat treatments that utilize alternative heat production via optical or magnetic stimuli. However, it remains a challenge to understand fully the complex RF-nanoparticle-intracellular interactions before full system optimization can be engineered. Herein we have shown that liver cancer cells can selectively internalize antibody-conjugated gold nanoparticles (AuNPs) through receptor-mediated endocytosis, with the nanoparticles predominantly accumulating and aggregating within cytoplasmic endolysosomes. After exposure to an external RF field, nonaggregated AuNPs absorbed and dissipated energy as heat, causing thermal damage to the targeted cancer cells. We also observed that RF absorption and heat dissipation is dependent on solubility of AuNPs in the colloid, which is pH dependent. Furthermore, by modulating endolysosomal pH it is possible to prevent intracellular AuNP aggregation and enhance thermal cytotoxicity in hepatocellular cancer cells. FROM THE CLINICAL EDITOR: Gold nanoparticles absorb energy from RF fields and can exert hyperthermic effects leading to cell death. Combining this known effect with antibody-based targeting of the nanoparticles, selective cancer specific hyperthermia induced cell death therapies can be designed, as demonstrated in this article.


Asunto(s)
Oro/uso terapéutico , Hipertermia Inducida/métodos , Inmunoconjugados/uso terapéutico , Neoplasias Hepáticas/terapia , Nanopartículas/uso terapéutico , Terapia por Radiofrecuencia , Anticuerpos/química , Anticuerpos/uso terapéutico , Línea Celular Tumoral , Oro/química , Humanos , Concentración de Iones de Hidrógeno , Inmunoconjugados/química , Hígado/metabolismo , Hígado/patología , Neoplasias Hepáticas/metabolismo , Neoplasias Hepáticas/patología , Lisosomas/metabolismo , Lisosomas/patología , Nanopartículas/química , Solubilidad
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA