Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo de estudio
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 19(12)2021 Nov 29.
Artículo en Inglés | MEDLINE | ID: mdl-34940681

RESUMEN

Marine biofouling is a natural process that represents major economic, environmental, and health concerns. Some booster biocides have been used in biofouling control, however, they were found to accumulate in environmental compartments, showing negative effects on marine organisms. Therefore, it is urgent to develop new eco-friendly alternatives. Phenyl ketones, such as benzophenones and acetophenones, have been described as modulators of several biological activities, including antifouling activity (AF). In this work, acetophenones were combined with other chemical substrates through a 1,2,3-triazole ring, a strategy commonly used in Medicinal Chemistry. In our approach, a library of 14 new acetophenone-triazole hybrids was obtained through the copper(I)-catalyzed alkyne-azide cycloaddition "click" reaction. All of the synthesized compounds were evaluated against the settlement of a representative macrofouling species, Mytilus galloprovincialis, as well as on biofilm-forming marine microorganisms, including bacteria and fungi. The growth of the microalgae Navicula sp. was also evaluated after exposure to the most promising compounds. While compounds 6a, 7a, and 9a caused significant inhibition of the settlement of mussel larvae, compounds 3b, 4b, and 7b were able to inhibit Roseobacter litoralis bacterial biofilm growth. Interestingly, acetophenone 7a displayed activity against both mussel larvae and the microalgae Navicula sp., suggesting a complementary action of this compound against macro- and microfouling species. The most potent compounds (6a, 7a, and 9a) also showed to be less toxic to the non-target species Artemia salina than the biocide Econea®. Regarding both AF potency and ecotoxicity activity evaluation, acetophenones 7a and 9a were put forward in this work as promising eco-friendly AF agents.


Asunto(s)
Acetofenonas/farmacología , Incrustaciones Biológicas/prevención & control , Desinfectantes/farmacología , Triazoles/farmacología , Acetofenonas/química , Animales , Organismos Acuáticos , Biopelículas/efectos de los fármacos , Bivalvos/efectos de los fármacos , Desinfectantes/química , Larva/efectos de los fármacos , Microalgas/efectos de los fármacos , Relación Estructura-Actividad , Triazoles/química
2.
Eur J Med Chem ; 151: 272-284, 2018 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-29626799

RESUMEN

Obesity is an increasing epidemic worldwide and novel treatments are urgently needed. Polyphenols are natural compounds derived from plants, which are known in particular for their antioxidant properties. However, some polyphenols were described to possess anti-obesity activities in vitro and in vivo. In this study, we aimed to screen a library of 85 polyphenol derivatives for their lipid reducing activity and toxicity. Compounds were analyzed at 5 µM with the zebrafish Nile red fluorescence fat metabolism assay and for general toxicity in vivo. To improve the safety profile, compounds were screened at 50 µM in murine preadipocytes in vitro for cytotoxicity. Obtained activity data were used to create a 2D-QSAR (quantitative structure activity relationship) model. 38 polyphenols showed strong lipid reducing activity. Toxicity analysis revealed that 18 of them did not show any toxicity in vitro or in vivo. QSAR analysis revealed the importance of the number of rings, fractional partial positively charged surface area, relative positive charge, relative number of oxygen atoms, and partial negative surface area for lipid-reducing activity. The five most potent compounds with EC50 values in the nanomolar range for lipid reducing activity and without any toxic effects are strong candidates for future research and development into anti-obesity drugs. Molecular profiling for fasn, sirt1, mtp and ppary revealed one compound that reduced significantly fasn mRNA expression.


Asunto(s)
Fármacos Antiobesidad/farmacología , Antioxidantes/farmacología , Metabolismo de los Lípidos/efectos de los fármacos , Polifenoles/farmacología , Células 3T3-L1 , Adipocitos/efectos de los fármacos , Adipocitos/metabolismo , Animales , Fármacos Antiobesidad/química , Fármacos Antiobesidad/toxicidad , Antioxidantes/química , Antioxidantes/toxicidad , Evaluación Preclínica de Medicamentos , Ratones , Obesidad/tratamiento farmacológico , Obesidad/metabolismo , Polifenoles/química , Polifenoles/toxicidad , Pez Cebra
3.
Semin Cancer Biol ; 46: 55-64, 2017 10.
Artículo en Inglés | MEDLINE | ID: mdl-28392464

RESUMEN

A direct impact of food on health, which demonstrates that dietary habit is one of the most important determinants of chronic diseases such as cancers, has led to an increased interest of the consumers toward natural bioactive compounds as functional ingredients or nutraceuticals. Epidemiological studies revealed that the populations of many Asian countries with high consumption of fish and seafood have low prevalence of particular type of cancers such as lung, breast, colorectal and prostate cancers. This observation has led to extensive investigations of the benefits of compounds present in edible marine organisms such as fish, marine invertebrates (mollusks, echinoderms) and marine algae as cancer chemopreventive agents. Interestingly, many of these marine organisms not only constitute as seafood delicacy but also as ingredients used in folk medicine of some East and Southeast Asian countries. The results of the investigations on extracts and compounds from fish (cods, anchovy, eel and also fish protein hydrolysates), mollusks (mussel, oyster, clams and abalone), as well as from sea cucumbers on the in vivo/in vitro anticancer/antitumor activities can, in part, support the health benefits of these edible marine organisms.


Asunto(s)
Organismos Acuáticos , Neoplasias/dietoterapia , Alimentos Marinos , Animales , Humanos , Neoplasias/patología , Neoplasias/prevención & control
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA