Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 21(7)2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27399666

RESUMEN

Xylopia laevigata (Annonaceae), known locally as "meiú" or "pindaíba", is widely used in folk medicine in Northeastern Brazil. In the present work, we performed phytochemical analyses of the stem of X. laevigata, which led to the isolation of 19 alkaloids: (-)-roemerine, (+)-anonaine, lanuginosine, (+)-glaucine, (+)-xylopine, oxoglaucine, (+)-norglaucine, asimilobine, (-)-xylopinine, (+)-norpurpureine, (+)-N-methyllaurotetanine, (+)-norpredicentrine, (+)-discretine, (+)-calycinine, (+)-laurotetanine, (+)-reticuline, (-)-corytenchine, (+)-discretamine and (+)-flavinantine. The in vitro cytotoxic activity toward the tumor cell lines B16-F10 (mouse melanoma), HepG2 (human hepatocellular carcinoma), K562 (human chronic myelocytic leukemia) and HL-60 (human promyelocytic leukemia) and non-tumor peripheral blood mononuclear cells (PBMCs) was tested using the Alamar Blue assay. Lanuginosine, (+)-xylopine and (+)-norglaucine had the highest cytotoxic activity. Additionally, the pro-apoptotic effects of lanuginosine and (+)-xylopine were investigated in HepG2 cells using light and fluorescence microscopies and flow cytometry-based assays. Cell morphology consistent with apoptosis and a marked phosphatidylserine externalization were observed in lanuginosine- and (+)-xylopine-treated cells, suggesting induction of apoptotic cell death. In addition, (+)-xylopine treatment caused G2/M cell cycle arrest in HepG2 cells. These data suggest that X. laevigata is a potential source for cytotoxic alkaloids.


Asunto(s)
Alcaloides/farmacología , Antineoplásicos Fitogénicos/farmacología , Aporfinas/farmacología , Citotoxinas/farmacología , Tallos de la Planta/química , Xylopia/química , Alcaloides/química , Alcaloides/aislamiento & purificación , Animales , Antineoplásicos Fitogénicos/química , Antineoplásicos Fitogénicos/aislamiento & purificación , Apoptosis/efectos de los fármacos , Aporfinas/química , Aporfinas/aislamiento & purificación , Citotoxinas/química , Citotoxinas/aislamiento & purificación , Puntos de Control de la Fase G2 del Ciclo Celular/efectos de los fármacos , Células HL-60 , Células Hep G2 , Humanos , Células K562 , Leucocitos Mononucleares/citología , Leucocitos Mononucleares/efectos de los fármacos , Melanoma Experimental/tratamiento farmacológico , Ratones , Extractos Vegetales/química , Cultivo Primario de Células
2.
BMC Complement Altern Med ; 16: 199, 2016 Jul 08.
Artículo en Inglés | MEDLINE | ID: mdl-27391476

RESUMEN

BACKGROUND: Great biodiversity is a highlight of Brazilian flora. In contrast, the therapeutic potentialities of most species used in folk medicine remain unknown. Several of these species are commonly used to treat cancer. In this study, we investigated the cytotoxic activity of 18 plants from 16 families that are found in the northeast region of Brazil. METHODS: The following species were studied: Byrsonima sericea DC. (Malpighiaceae), Cupania impressinervia Acev. Rodr. var. (revoluta) Radlk (Sapindaceae), Duranta repens Linn. (Verbenaceae), Helicostylis tomentosa (Poepp. & Endl) Rusby (Moraceae), Himatanthus bracteatus (A.DC.) Woodson (Apocynaceae), Ipomoea purga (Wender.) Hayne (Convolvulaceae), Ixora coccinea Linn. (Rubiaceae), Mabea piriri Aubl. (Euphorbiaceae), Miconia minutiflora (Melastomataceae), Momordica charantia L. (Cucurbitaceae), Ocotea glomerata (Nees) Mez (Lauraceae), Ocotea longifolia Kunth (Oreodaphne opifera Mart. Nees) (Lauraceae), Pavonia fruticosa (Mill.) Fawc. & Rendle (Malvaceae), Psychotria capitata Ruiz & Pav. (Rubiaceae), Schefflera morototoni (Aubl.) Maguire, Steyerm. & Frodin (Araliaceae), Solanum paludosum Moric. (Solanaceae), Xylopia frutescens Aubl. (Annonaceae) and Zanthoxylum rhoifolium Lam. (Rutaceae). Their dried leaves, stems, flowers or fruits were submitted to different solvent extractions, resulting in 55 extracts. After incubating for 72 h, the cytotoxicity of each extract was tested against tumor cell lines using the alamar blue assay. RESULTS: The B. sericea, D. repens, H. bracteatus, I. purga, I. coccinea, M. piriri, O. longifolia and P. capitata extracts demonstrated the most potent cytotoxic activity. The chloroform soluble fractions of D. repens flowers and the hexane extract of I. coccinea flowers led to the isolation of quercetin and a mixture of α- and ß-amyrin, respectively, and quercetin showed moderate cytotoxic activity. CONCLUSION: The B. sericea, D. repens, H. bracteatus, I. purga, I. coccinea, M. piriri, O. longifolia and P. capitata plants were identified as having potent cytotoxic effects. Further investigations are required to determine the mechanisms of cytotoxicity exhibited and their in vivo activities. This work reinforces the need to understand the therapeutics potentialities of Brazilian medicinal plants.


Asunto(s)
Supervivencia Celular/efectos de los fármacos , Extractos Vegetales/toxicidad , Plantas Medicinales/química , Adulto , Animales , Brasil , Línea Celular Tumoral , Humanos , Concentración 50 Inhibidora , Medicina Tradicional , Ratones , Fitoterapia , Extractos Vegetales/química
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA