Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Reprod Domest Anim ; 59(3): e14543, 2024 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-38459831

RESUMEN

This study aims to investigate the effects of melatonin on follicular growth, viability and ultrastructure, as well as on the levels of mRNA for antioxidant enzymes, reactive oxygen species (ROS) and meiotic progression in oocytes from in vitro cultured bovine early antral follicles. To this end, isolated early antral follicles (500-600 µm) were cultured in TCM-199+ alone or supplemented with 10-6 , 10-7 or 10-8 M melatonin at 38.5°C with 5% CO2 for 8 days. Follicle diameters were evaluated at days 0, 4 and 8 of culture. At the end of culture, ultrastructure, chromatin configuration, viability (calcein-AM and ethidium homodimer-1 staining), and the levels of ROS and mRNA for catalase (CAT), superoxide dismutase (SOD) and peroxiredoxin 6 (PRDX6) and glutathione peroxidase (GPx) were investigated in oocyte-granulosa cell complexes (OGCs). The results showed that early antral follicles cultured with 10-6 and 10-8 M melatonin had a progressive and significant increase in their diameters throughout the culture period (p < .05). Additionally, oocytes from follicles cultured with 10-7 or 10-8 M melatonin had increased fluorescence for calcein-AM, while those cultured with 10-6 or 10-7 M had reduced fluorescence for ethidium homodimer-1. Different from follicles cultured in other treatments, those cultured with 10-8 M melatonin had well-preserved ultrastructure of oocyte and granulosa cells. Melatonin, however, did not influence the levels of ROS, the mitochondrial activity, oocyte meiotic resumption and expression mRNA for SOD, CAT, GPX1 and PRDX6. In conclusion, the presence of 10-8 M melatonin in culture medium improves viability and preserves the ultrastructure of oocyte and granulosa cells of early antral follicles cultured in vitro.


Asunto(s)
Fluoresceínas , Melatonina , Femenino , Animales , Bovinos , Melatonina/farmacología , Melatonina/metabolismo , Especies Reactivas de Oxígeno/metabolismo , Oocitos , Superóxido Dismutasa , ARN Mensajero/metabolismo
2.
Anim Reprod Sci ; 247: 107078, 2022 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36179655

RESUMEN

This study aimed to investigate the effects of Aloe vera extract on follicular growth, viability, ultrastructure, and mRNA levels for superoxide dismutase (SOD), catalase (CAT), glutathione peroxidase 1 (GPX1) and peroxiredoxin 6 (PRDX6) in bovine secondary follicles cultured in vitro. To this end, secondary follicles were mechanically isolated from the ovarian cortex and cultured at 38.5 °C, with 5% CO2 in air, for 18 days in TCM-199+ alone or supplemented with 2.5%, 5.0%, 10.0% and 20.0% Aloe vera extract. Follicular growth, morphology and antrum formation were evaluated every 6 days, while ultrastructure was evaluated at the end of culture. Analysis of viability was performed by calcein-AM and ethidium homodimer-1, while mRNA levels for SOD, CAT, GPX1 and PRDX6 were evaluated by real-time PCR at the end of culture. The results show that follicles cultured with 2.5% Aloe vera had increased the rate of antrum formation, while 2.5% and 5.0% Aloe vera improved follicular viability rate. Follicles cultured with 2.5% and 10.0% Aloe vera increased the levels of mRNA for SOD and GPX1 respectively, but the levels of CAT were reduced in follicles cultured with 2.5%, 5.0%, 10.0% and 20.0%. Additionally, follicles cultured with 2.5% of Aloe vera had their ultrastructure well preserved, while those cultured with 5.0%, 10.0% and 20.0% exhibited increased oocyte vacuolization and damaged organelles. In conclusion, 2.5% Aloe vera increases antrum formation, viability and expression of mRNA for SOD in cultured secondary follicles, but higher concentrations of Aloe vera have negative effects on follicular ultrastructure.


Asunto(s)
Aloe , Bovinos , Animales , Aloe/metabolismo , Antioxidantes/farmacología , ARN Mensajero/genética , ARN Mensajero/metabolismo , Extractos Vegetales/farmacología , Superóxido Dismutasa
3.
Animals (Basel) ; 13(1)2022 Dec 20.
Artículo en Inglés | MEDLINE | ID: mdl-36611626

RESUMEN

This study evaluated the potential of Cimicifuga racemosa (L.) Nutt extract (CIMI) to reduce the deleterious effects of doxorubicin (DOXO) in oocytes, follicles and stromal cells in mice ovaries cultured in vitro. In experiment 1, mice ovaries were cultured in DMEM+ alone or supplemented with 5, 50 or 500 ng/mL CIMI, while in experiment 2, mice ovaries were cultured in DMEM+ alone or supplemented with 5 ng/mL CIMI (better concentration), 0.3 µg/mL DOXO or both. Thereafter, the ovaries were processed for histological (morphology, growth, activation, extracellular matrix configuration and stromal cell density), immunohistochemical (caspase-3) analyses. Follicle viability was evaluated by fluorescence microscopy (ethidium homodimer-1 and calcein) while real-time PCR was performed to analyses the levels of (mRNA for SOD, CAT and nuclear factor erythroid 2-related factor 2 (NRF2) analyses. The results showed that DOXO reduces the percentage of normal follicles and the density of stromal cells in cultured ovaries, but these harmful effects were blocked by CIMI. The DOXO reduced the percentage of primordial follicles, while the presence of CIMI alone did not influence percentage of primordial follicles. A higher staining for caspase-3 was seen in ovaries cultured in control medium alone or with DOXO when compared with those cultured with CIMI alone or both CIMI and DOXO. In addition, follicles from ovaries cultured with both CIMI and DOXO were stained by calcein, while those follicles cultured with only DOXO were stained with ethidium homodimer-1. Furthermore, ovaries cultured with CIMI or both CIMI and DOXO had higher levels of mRNA for SOD and CAT, respectively, than those cultured with only DOXO. In conclusion, the extract of CIMI protects the ovaries against deleterious effects of DOXO on follicular survival and ovarian stromal cells.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA