RESUMEN
This study examined the nutrient budgets and biogeochemical dynamics in the coastal regions of northern Beibu Gulf (CNBG). Nutrient concentrations varied spatially and seasonally among the different bays. High nutrient levels were found in the regions with high riverine inputs and intensive mariculture. Using a three end-member mixing model, nutrient biogeochemistry within the ecosystem was estimated separately from complex physical mixing effects. Nutrient consumption dominated in most bays in summer, whereas nutrient regeneration dominated in winter, likely due to phytoplankton decomposition, vertical mixing and desorption. Through the Land-Ocean Interaction Coastal Zone (LOICZ) model, the robust nutrient budgets were constructed, indicating that the CNBG behaved as a sink of dissolved inorganic nitrogen, phosphorus and silicon. River-borne nutrient inputs were the dominant nutrient source, while residual flows and water exchange flows transported nutrient off the estuaries. This study could help us better understand nutrient cycles and nutrient sources/sinks in the CNBG.
Asunto(s)
Ecosistema , Estuarios , Humanos , Bahías , Fitoplancton , Nutrientes , China , Nitrógeno/análisis , Monitoreo del Ambiente , Fósforo/análisisRESUMEN
The Cerrado soil is under constant modification, especially because of the use of agricultural systems, which affect soil carbon (C) and phosphorus (P) functioning. Thus, the objective of this study was to determine the C and P dynamics in Brazilian Cerrado Oxisol in Piauí State under natural and anthropic conditions, considering that conservational agricultural management and no-tillage systems can restore the C and P pools in that soil. Four soil samples with distinct characteristics (native Cerrado, NC; burned native Cerrado, BNC; conventional tillage agricultural system, CTS; and no-tillage agricultural system, NTS) were collected in the study area for chemical and physical laboratory analysis. The total organic carbon (TOC) concentrations found were 33 g kg-1, 27 g kg-1, 26 g kg-1, and 20 g kg-1 for CTS, NTS, NC, and BNC, respectively. The NTS had a total nitrogen (TN) concentration of 2.0 g kg-1. The CTS had 33.4 g kg-1 of soil-oxidizable C, followed by the NTS with 27.2 g kg-1. In both studied layers, the NTS had an organic P concentration > 200 mg kg-1. The higher TOC concentration in the CTS was because of the higher content of clay in comparison with that in the NTS. The organic P in the NTS was associated with a less labile fraction of C. Thus, despite the disturbance caused by agricultural systems, the adoption of the NTS could be an influential strategy in agricultural systems to restore soil organic functioning in the Brazilian Cerrado Oxisol in Piauí State.