Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 6 de 6
Filtrar
1.
Neuromodulation ; 26(8): 1689-1698, 2023 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-36470728

RESUMEN

OBJECTIVE: Thalamic deep brain stimulation (DBS) is the primary surgical therapy for essential tremor (ET). Thalamic DBS traditionally uses an atlas-based targeting approach, which, although nominally accurate, may obscure individual anatomic differences from population norms. The objective of this study was to compare this traditional atlas-based approach with a novel quantitative modeling methodology grounded in individual tissue microstructure (N-of-1 approach). MATERIALS AND METHODS: The N-of-1 approach uses individual patient diffusion tensor imaging (DTI) data to perform thalamic segmentation and volume of tissue activation (VTA) modeling. For each patient, the thalamus was individually segmented into 13 nuclei using DTI-based k-means clustering. DBS-induced VTAs associated with tremor suppression and side effects were then computed for each patient with finite-element electric-field models incorporating DTI microstructural data. Results from N-of-1 and traditional atlas-based modeling were compared for a large cohort of patients with ET treated with thalamic DBS. RESULTS: The size and shape of individual N-of-1 thalamic nuclei and VTAs varied considerably across patients (N = 22). For both methods, tremor-improving therapeutic VTAs showed similar overlap with motor thalamic nuclei and greater motor than sensory nucleus overlap. For VTAs producing undesirable sustained paresthesia, 94% of VTAs overlapped with N-of-1 sensory thalamus estimates, whereas 74% of atlas-based segmentations overlapped. For VTAs producing dysarthria/motor contraction, the N-of-1 approach predicted greater spread beyond the thalamus into the internal capsule and adjacent structures than the atlas-based method. CONCLUSIONS: Thalamic segmentation and VTA modeling based on individual tissue microstructure explain therapeutic stimulation equally well and side effects better than a traditional atlas-based method in DBS for ET. The N-of-1 approach may be useful in DBS targeting and programming, particularly when patient neuroanatomy deviates from population norms.


Asunto(s)
Estimulación Encefálica Profunda , Temblor Esencial , Humanos , Temblor Esencial/diagnóstico por imagen , Temblor Esencial/terapia , Imagen de Difusión Tensora/métodos , Temblor/terapia , Estimulación Encefálica Profunda/métodos , Tálamo/diagnóstico por imagen , Tálamo/cirugía
2.
Br J Sports Med ; 54(2): 74-78, 2020 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-30054340

RESUMEN

OBJECTIVE: To determine whether antioxidant supplements and antioxidant-enriched foods can prevent or reduce delayed-onset muscle soreness after exercise. METHODS: We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017. RESULTS: In total, 50 studies were included in this review which included a total of 1089 participants (961 were male and 128 were female) with an age range of 16-55 years. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings. We rescaled to a 0-10 cm scale in order to quantify the actual difference between groups and we found that the 95% CIs for all five follow-up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD -0.52, 95% CI -0.95 to -0.08); at 24 hours (MD -0.17, 95% CI -0.42 to 0.07); at 48 hours (mean difference (MD) -0.41, 95% CI -0.69 to -0.12); at 72 hours (MD -0.29, 95% CI -0.59 to 0.02); and at 96 hours (MD -0.03, 95% CI -0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. CONCLUSIONS: There is moderate to low-quality evidence that high-dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise of up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements.


Asunto(s)
Antioxidantes/uso terapéutico , Suplementos Dietéticos , Ejercicio Físico/fisiología , Alimentos Fortificados , Mialgia/prevención & control , Antioxidantes/efectos adversos , Humanos
3.
J Appl Physiol (1985) ; 127(5): 1478-1490, 2019 11 01.
Artículo en Inglés | MEDLINE | ID: mdl-31343948

RESUMEN

Raynaud's phenomenon (RP) is characterized by recurrent transient peripheral vasospasm and lower nitric oxide (NO) bioavailability in the cold. We investigated the effect of nitrate-rich beetroot juice (BJ) supplementation on 1) NO-mediated vasodilation, 2) cutaneous vascular conductance (CVC) and skin temperature (Tsk) following local cooling, and 3) systemic anti-inflammatory status. Following baseline testing, 23 individuals with RP attended four times, in a double-blind, randomized crossover design, following acute and chronic (14 days) BJ and nitrate-depleted beetroot juice (NDBJ) supplementation. Peripheral Tsk and CVC were measured during and after mild hand and foot cooling, and during transdermal delivery of acetylcholine and sodium nitroprusside. Markers of anti-inflammatory status were also measured. Plasma nitrite concentration ([nitrite]) was increased in the BJ conditions (P < 0.001). Compared with the baseline visit, thumb CVC was greater following chronic-BJ (Δ2.0 flux/mmHg, P = 0.02) and chronic-NDBJ (Δ1.45 flux/mmHg, P = 0.01) supplementation; however, no changes in Tsk were observed (P > 0.05). Plasma [interleukin-10] was greater, pan endothelin and systolic and diastolic blood pressure (BP) were reduced, and forearm endothelial function was improved, by both BJ and NDBJ supplementation (P < 0.05). Acute and chronic BJ and NDBJ supplementation improved anti-inflammatory status, endothelial function and blood pressure (BP). CVC following cooling increased post chronic-BJ and chronic-NDBJ supplementation, but no effect on Tsk was observed. The key findings are that beetroot supplementation improves thumb blood flow, improves endothelial function and anti-inflammatory status, and reduces BP in people with Raynaud's.NEW & NOTEWORTHY This is the first study to examine the effect of dietary nitrate supplementation in individuals with Raynaud's phenomenon. The principal novel findings from this study were that both beetroot juice and nitrate-depleted beetroot juice 1) increased blood flow in the thumb following a cold challenge; 2) enhanced endothelium-dependent and -independent vasodilation in the forearm; 3) reduced systolic and diastolic blood pressure, and pan-endothelin concentration; and 4) improved inflammatory status in comparison to baseline.


Asunto(s)
Antiinflamatorios/administración & dosificación , Beta vulgaris , Velocidad del Flujo Sanguíneo/fisiología , Endotelio Vascular/fisiología , Jugos de Frutas y Vegetales , Enfermedad de Raynaud/dietoterapia , Flujo Sanguíneo Regional/fisiología , Anciano , Velocidad del Flujo Sanguíneo/efectos de los fármacos , Estudios Cruzados , Suplementos Dietéticos , Método Doble Ciego , Endotelio Vascular/efectos de los fármacos , Femenino , Humanos , Masculino , Microvasos/efectos de los fármacos , Microvasos/fisiología , Persona de Mediana Edad , Enfermedad de Raynaud/fisiopatología , Flujo Sanguíneo Regional/efectos de los fármacos
4.
Cochrane Database Syst Rev ; 12: CD009789, 2017 12 14.
Artículo en Inglés | MEDLINE | ID: mdl-29238948

RESUMEN

BACKGROUND: Muscle soreness typically occurs after intense exercise, unaccustomed exercise or actions that involve eccentric contractions where the muscle lengthens while under tension. It peaks between 24 and 72 hours after the initial bout of exercise. Many people take antioxidant supplements or antioxidant-enriched foods before and after exercise in the belief that these will prevent or reduce muscle soreness after exercise. OBJECTIVES: To assess the effects (benefits and harms) of antioxidant supplements and antioxidant-enriched foods for preventing and reducing the severity and duration of delayed onset muscle soreness following exercise. SEARCH METHODS: We searched the Cochrane Bone, Joint and Muscle Trauma Group Specialised Register, the Cochrane Central Register of Controlled Trials, MEDLINE, Embase, SPORTDiscus, trial registers, reference lists of articles and conference proceedings up to February 2017. SELECTION CRITERIA: We included randomised and quasi-randomised controlled trials investigating the effects of all forms of antioxidant supplementation including specific antioxidant supplements (e.g. tablets, powders, concentrates) and antioxidant-enriched foods or diets on preventing or reducing delayed onset muscle soreness (DOMS). We excluded studies where antioxidant supplementation was combined with another supplement. DATA COLLECTION AND ANALYSIS: Two review authors independently screened search results, assessed risk of bias and extracted data from included trials using a pre-piloted form. Where appropriate, we pooled results of comparable trials, generally using the random-effects model. The outcomes selected for presentation in the 'Summary of findings' table were muscle soreness, collected at times up to 6 hours, 24, 48, 72 and 96 hours post-exercise, subjective recovery and adverse effects. We assessed the quality of the evidence using GRADE. MAIN RESULTS: Fifty randomised, placebo-controlled trials were included, 12 of which used a cross-over design. Of the 1089 participants, 961 (88.2%) were male and 128 (11.8%) were female. The age range for participants was between 16 and 55 years and training status varied from sedentary to moderately trained. The trials were heterogeneous, including the timing (pre-exercise or post-exercise), frequency, dose, duration and type of antioxidant supplementation, and the type of preceding exercise. All studies used an antioxidant dosage higher than the recommended daily amount. The majority of trials (47) had design features that carried a high risk of bias due to selective reporting and poorly described allocation concealment, potentially limiting the reliability of their findings.We tested only one comparison: antioxidant supplements versus control (placebo). No studies compared high-dose versus low-dose, where the low-dose supplementation was within normal or recommended levels for the antioxidant involved.Pooled results for muscle soreness indicated a small difference in favour of antioxidant supplementation after DOMS-inducing exercise at all main follow-ups: up to 6 hours (standardised mean difference (SMD) -0.30, 95% confidence interval (CI) -0.56 to -0.04; 525 participants, 21 studies; low-quality evidence); at 24 hours (SMD -0.13, 95% CI -0.27 to 0.00; 936 participants, 41 studies; moderate-quality evidence); at 48 hours (SMD -0.24, 95% CI -0.42 to -0.07; 1047 participants, 45 studies; low-quality evidence); at 72 hours (SMD -0.19, 95% CI -0.38 to -0.00; 657 participants, 28 studies; moderate-quality evidence), and little difference at 96 hours (SMD -0.05, 95% CI -0.29 to 0.19; 436 participants, 17 studies; low-quality evidence). When we rescaled to a 0 to 10 cm scale in order to quantify the actual difference between groups, we found that the 95% CIs for all five follow-up times were all well below the minimal important difference of 1.4 cm: up to 6 hours (MD -0.52, 95% CI -0.95 to -0.08); at 24 hours (MD -0.17, 95% CI -0.42 to 0.07); at 48 hours (MD -0.41, 95% CI -0.69 to -0.12); at 72 hours (MD -0.29, 95% CI -0.59 to 0.02); and at 96 hours (MD -0.03, 95% CI -0.43 to 0.37). Thus, the effect sizes suggesting less muscle soreness with antioxidant supplementation were very unlikely to equate to meaningful or important differences in practice. Neither of our subgroup analyses to examine for differences in effect according to type of DOMS-inducing exercise (mechanical versus whole body aerobic) or according to funding source confirmed subgroup differences. Sensitivity analyses excluding cross-over trials showed that their inclusion had no important impact on results.None of the 50 included trials measured subjective recovery (return to previous activities without signs or symptoms).There is very little evidence regarding the potential adverse effects of taking antioxidant supplements as this outcome was reported in only nine trials (216 participants). From the studies that did report adverse effects, two of the nine trials found adverse effects. All six participants in the antioxidant group of one trial had diarrhoea and four of these also had mild indigestion; these are well-known side effects of the particular antioxidant used in this trial. One of 26 participants in a second trial had mild gastrointestinal distress. AUTHORS' CONCLUSIONS: There is moderate to low-quality evidence that high dose antioxidant supplementation does not result in a clinically relevant reduction of muscle soreness after exercise at up to 6 hours or at 24, 48, 72 and 96 hours after exercise. There is no evidence available on subjective recovery and only limited evidence on the adverse effects of taking antioxidant supplements. The findings of, and messages from, this review provide an opportunity for researchers and other stakeholders to come together and consider what are the priorities, and underlying justifications, for future research in this area.


Asunto(s)
Antioxidantes/uso terapéutico , Suplementos Dietéticos , Ejercicio Físico , Alimentos Fortificados , Mialgia/tratamiento farmacológico , Mialgia/prevención & control , Adolescente , Adulto , Antioxidantes/efectos adversos , Femenino , Humanos , Masculino , Persona de Mediana Edad , Mialgia/etiología , Ensayos Clínicos Controlados Aleatorios como Asunto , Factores de Tiempo
5.
Nitric Oxide ; 70: 76-85, 2017 Nov 01.
Artículo en Inglés | MEDLINE | ID: mdl-28941934

RESUMEN

Individuals with cold sensitivity have low peripheral skin blood flow and skin temperature possibly due to reduced nitric oxide (NO•) bioavailability. Beetroot has a high concentration of inorganic nitrate and may increase NO-mediated vasodilation. Using a placebo-controlled, double blind, randomised, crossover design, this study tested the hypotheses that acute beetroot supplementation would increase the rate of cutaneous rewarming following a local cold challenge and augment endothelium-dependent vasodilation in cold sensitive individuals. Thirteen cold sensitive participants completed foot and hand cooling (separately, in 15 °C water for 2 min) with spontaneous rewarming in 30 °C air whilst skin temperature and cutaneous vascular conductance (CVC) were measured (Baseline). On two further separate visits, participants consumed 140 ml of either concentrated beetroot juice (nitrate supplementation) or nitrate-depleted beetroot juice (Placebo) 90 min before resting seated blood pressure was measured. Endothelial function was assessed by measuring CVC at the forearm, finger and foot during iontophoresis of 1% w/v acetylcholine followed by foot and hand cooling as for Baseline. Plasma nitrite concentrations significantly increased in nitrate supplementation compared to Placebo and Baseline (502 ± 246 nmol L-1; 73 ± 45 nmol L-1; 74 ± 49 nmol L-1 respectively; n = 11; P < 0.001). Resting blood pressure and the response to foot and hand cooling did not differ between conditions (all P > 0.05). Nitrate supplementation did not alter endothelial function in the forearm, finger or foot (all P > 0.05) compared to Placebo. Despite a physiologically meaningful rise in plasma nitrite concentrations, acute nitrate supplementation does not alter extremity rewarming, endothelial function or blood pressure in individuals with cold sensitivity.


Asunto(s)
Frío/efectos adversos , Suplementos Dietéticos , Endotelio Vascular/efectos de los fármacos , Nitratos/farmacología , Acetilcolina/administración & dosificación , Adulto , Beta vulgaris , Presión Sanguínea/efectos de los fármacos , Estudios Cruzados , Método Doble Ciego , Endotelio Vascular/fisiología , Femenino , Dedos/irrigación sanguínea , Pie/irrigación sanguínea , Antebrazo/irrigación sanguínea , Jugos de Frutas y Vegetales , Humanos , Masculino , Persona de Mediana Edad , Nitratos/administración & dosificación , Nitratos/sangre , Nitritos/sangre , Flujo Sanguíneo Regional , Recalentamiento
6.
Arch Phys Med Rehabil ; 94(1): 149-63, 2013 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-22885279

RESUMEN

OBJECTIVES: To examine the effect of thermal agents on the range of movement (ROM) and mechanical properties in soft tissue and to discuss their clinical relevance. DATA SOURCES: Electronic databases (Cochrane Central Register of Controlled Trials, MEDLINE, and EMBASE) were searched from their earliest available record up to May 2011 using Medical Subjects Headings and key words. We also undertook related articles searches and read reference lists of all incoming articles. STUDY SELECTION: Studies involving human participants describing the effects of thermal interventions on ROM and/or mechanical properties in soft tissue. Two reviewers independently screened studies against eligibility criteria. DATA EXTRACTION: Data were extracted independently by 2 review authors using a customized form. Methodologic quality was also assessed by 2 authors independently, using the Cochrane risk of bias tool. DATA SYNTHESIS: Thirty-six studies, comprising a total of 1301 healthy participants, satisfied the inclusion criteria. There was a high risk of bias across all studies. Meta-analyses were not undertaken because of clinical heterogeneity; however, effect sizes were calculated. There were conflicting data on the effect of cold on joint ROM, accessory joint movement, and passive stiffness. There was limited evidence to determine whether acute cold applications enhance the effects of stretching, and further evidence is required. There was evidence that heat increases ROM, and a combination of heat and stretching is more effective than stretching alone. CONCLUSIONS: Heat is an effective adjunct to developmental and therapeutic stretching techniques and should be the treatment of choice for enhancing ROM in a clinical or sporting setting. The effects of heat or ice on other important mechanical properties (eg, passive stiffness) remain equivocal and should be the focus of future study.


Asunto(s)
Crioterapia/métodos , Hipertermia Inducida/métodos , Rango del Movimiento Articular/fisiología , Traumatismos de los Tejidos Blandos/rehabilitación , Fenómenos Biomecánicos , Humanos , Ejercicios de Estiramiento Muscular
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA