Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Mar Drugs ; 22(4)2024 Apr 10.
Artículo en Inglés | MEDLINE | ID: mdl-38667785

RESUMEN

Diabetes mellitus is a chronic metabolic condition marked by high blood glucose levels caused by inadequate insulin synthesis or poor insulin use. This condition affects millions of individuals worldwide and is linked to a variety of consequences, including cardiovascular disease, neuropathy, nephropathy, and retinopathy. Diabetes therapy now focuses on controlling blood glucose levels through lifestyle changes, oral medicines, and insulin injections. However, these therapies have limits and may not successfully prevent or treat diabetic problems. Several marine-derived chemicals have previously demonstrated promising findings as possible antidiabetic medicines in preclinical investigations. Peptides, polyphenols, and polysaccharides extracted from seaweeds, sponges, and other marine species are among them. As a result, marine natural products have the potential to be a rich source of innovative multitargeted medications for diabetes prevention and treatment, as well as associated complications. Future research should focus on the chemical variety of marine creatures as well as the mechanisms of action of marine-derived chemicals in order to find new antidiabetic medicines and maximize their therapeutic potential. Based on preclinical investigations, this review focuses on the next step for seaweed applications as potential multitargeted medicines for diabetes, highlighting the bioactivities of seaweeds in the prevention and treatment of this illness.


Asunto(s)
Diabetes Mellitus , Suplementos Dietéticos , Hipoglucemiantes , Algas Marinas , Algas Marinas/química , Humanos , Hipoglucemiantes/farmacología , Hipoglucemiantes/uso terapéutico , Diabetes Mellitus/tratamiento farmacológico , Animales , Productos Biológicos/farmacología , Productos Biológicos/uso terapéutico , Organismos Acuáticos
2.
Int J Mol Sci ; 25(2)2024 Jan 08.
Artículo en Inglés | MEDLINE | ID: mdl-38255871

RESUMEN

Seaweed, a miscellaneous group of marine algae, has long been recognized for its rich nutritional composition and bioactive compounds, being considered nutraceutical ingredient. This revision delves into the promising role of seaweed-derived nutrients as a beneficial resource for drug discovery and innovative product development. Seaweeds are abundant sources of essential vitamins, minerals, polysaccharides, polyphenols, and unique secondary metabolites, which reveal a wide range of biological activities. These bioactive compounds possess potential therapeutic properties, making them intriguing candidates for drug leads in various medical applications and pharmaceutical drug development. It explores their pharmacological properties, including antioxidant, anti-inflammatory, antimicrobial, and anticancer activities, shedding light on their potential as therapeutic agents. Moreover, the manuscript provides insights into the development of formulation strategies and delivery systems to enhance the bioavailability and stability of seaweed-derived compounds. The manuscript also discusses the challenges and opportunities associated with the integration of seaweed-based nutrients into the pharmaceutical and nutraceutical industries. Regulatory considerations, sustainability, and scalability of sustainable seaweed sourcing and cultivation methods are addressed, emphasizing the need for a holistic approach in harnessing seaweed's potential. This revision underscores the immense potential of seaweed-derived compounds as a valuable reservoir for drug leads and product development. By bridging the gap between marine biology, pharmacology, and product formulation, this research contributes to the critical advancement of sustainable and innovative solutions in the pharmaceutical and nutraceutical sectors.


Asunto(s)
Medicina , Desarrollo de Medicamentos , Vitaminas , Vehículos Farmacéuticos , Océanos y Mares
3.
Mar Drugs ; 21(11)2023 Nov 05.
Artículo en Inglés | MEDLINE | ID: mdl-37999402

RESUMEN

Diseases such as obesity; cardiovascular diseases such as high blood pressure, myocardial infarction and stroke; digestive diseases such as celiac disease; certain types of cancer and osteoporosis are related to food. On the other hand, as the world's population increases, the ability of the current food production system to produce food consistently is at risk. As a result, intensive agriculture has contributed to climate change and a major environmental impact. Research is, therefore, needed to find new sustainable food sources. One of the most promising sources of sustainable food raw materials is macroalgae. Algae are crucial to solving this nutritional deficiency because they are abundant in bioactive substances that have been shown to combat diseases such as hyperglycemia, diabetes, obesity, metabolic disorders, neurodegenerative diseases and cardiovascular diseases. Examples of these substances include polysaccharides such as alginate, fucoidan, agar and carrageenan; proteins such as phycobiliproteins; carotenoids such as ß-carotene and fucoxanthin; phenolic compounds; vitamins and minerals. Seaweed is already considered a nutraceutical food since it has higher protein values than legumes and soy and is, therefore, becoming increasingly common. On the other hand, compounds such as polysaccharides extracted from seaweed are already used in the food industry as thickening agents and stabilizers to improve the quality of the final product and to extend its shelf life; they have also demonstrated antidiabetic effects. Among the other bioactive compounds present in macroalgae, phenolic compounds, pigments, carotenoids and fatty acids stand out due to their different bioactive properties, such as antidiabetics, antimicrobials and antioxidants, which are important in the treatment or control of diseases such as diabetes, cholesterol, hyperglycemia and cardiovascular diseases. That said, there have already been some studies in which macroalgae (red, green and brown) have been incorporated into certain foods, but studies on gluten-free products are still scarce, as only the potential use of macroalgae for this type of product is considered. Considering the aforementioned issues, this review aims to analyze how macroalgae can be incorporated into foods or used as a food supplement, as well as to describe the bioactive compounds they contain, which have beneficial properties for human health. In this way, the potential of macroalgae-based products in eminent diseases, such as celiac disease, or in more common diseases, such as diabetes and cholesterol complications, can be seen.


Asunto(s)
Enfermedades Cardiovasculares , Enfermedad Celíaca , Diabetes Mellitus , Hiperglucemia , Algas Marinas , Humanos , Polisacáridos/metabolismo , Suplementos Dietéticos , Algas Marinas/metabolismo , Proteínas/metabolismo , Carotenoides/metabolismo , Fenoles/análisis , Obesidad , Atención a la Salud , Colesterol/metabolismo
4.
Mar Drugs ; 21(6)2023 May 26.
Artículo en Inglés | MEDLINE | ID: mdl-37367648

RESUMEN

Polyphenols are compounds found in various plants and foods, known for their antioxidant and anti-inflammatory properties. Recently, researchers have been exploring the therapeutic potential of marine polyphenols and other minor nutrients that are found in algae, fish and crustaceans. These compounds have unique chemical structures and exhibit diverse biological properties, including anti-inflammatory, antioxidant, antimicrobial and antitumor action. Due to these properties, marine polyphenols are being investigated as possible therapeutic agents for the treatment of a wide variety of conditions, such as cardiovascular disease, diabetes, neurodegenerative diseases and cancer. This review focuses on the therapeutic potential of marine polyphenols and their applications in human health, and also, in marine phenolic classes, the extraction methods, purification techniques and future applications of marine phenolic compounds.


Asunto(s)
Antioxidantes , Polifenoles , Animales , Humanos , Polifenoles/farmacología , Polifenoles/uso terapéutico , Polifenoles/química , Antioxidantes/farmacología , Antioxidantes/uso terapéutico , Antioxidantes/química , Micronutrientes/farmacología , Antiinflamatorios/farmacología , Antiinflamatorios/uso terapéutico , Antiinflamatorios/química , Extractos Vegetales/química , Plantas
5.
Mar Drugs ; 20(12)2022 Dec 17.
Artículo en Inglés | MEDLINE | ID: mdl-36547932

RESUMEN

With respect to the potential natural resources in the marine environment, marine macroalgae or seaweeds are recognized to have health impacts. Two marine algae that are found in the Red Sea, Codium tomentosum (Green algae) and Actinotrichia fragilis (Red algae), were collected. Antibacterial and antioxidant activities of aqueous extracts of these algae were evaluated in vitro. Polyphenols from the extracts were determined using HPLC. Fillet fish was fortified with these algal extracts in an attempt to improve its nutritional value, and sensory evaluation was performed. The antibacterial effect of C. tomentosum extract was found to be superior to that of A. fragilis extract. Total phenolic contents of C. tomentosum and A. fragilis aqueous extract were 32.28 ± 1.63 mg/g and 19.96 ± 1.28 mg/g, respectively, while total flavonoid contents were 4.54 ± 1.48 mg/g and 3.86 ± 1.02 mg/g, respectively. Extract of C. tomentosum demonstrates the highest antioxidant activity, with an IC50 value of 75.32 ± 0.07 µg/mL. The IC50 of L-ascorbic acid as a positive control was 22.71 ± 0.03 µg/mL. The IC50 values for inhibiting proliferation on normal PBMC cells were 33.7 ± 1.02 µg/mL and 51.0 ± 1.14 µg/mL for C. tomentosum and A. fragilis, respectively. The results indicated that both algal aqueous extracts were safe, with low toxicity to normal cells. Interestingly, fillet fish fortified with C. tomentosum extract demonstrated the greatest overall acceptance score. These findings highlight the potential of these seaweed species for cultivation as a sustainable and safe source of therapeutic compounds for treating human and fish diseases, as well as effective food supplements and preservatives instead of chemical ones after performing in vivo assays.


Asunto(s)
Chlorophyta , Rhodophyta , Algas Marinas , Animales , Humanos , Antioxidantes/farmacología , Leucocitos Mononucleares , Chlorophyta/química , Algas Marinas/química , Rhodophyta/química , Aditivos Alimentarios , Suplementos Dietéticos , Antibacterianos/farmacología , Extractos Vegetales/farmacología
6.
Mar Drugs ; 19(10)2021 Oct 14.
Artículo en Inglés | MEDLINE | ID: mdl-34677469

RESUMEN

Presently, there is a high demand for nutritionally enhanced foods, so it is a current challenge to look at new raw food sources that can supplement beneficially the human diet. The nutritional profile and key secondary metabolites of red seaweeds (Rhodophyta) are gaining interest because of this challenge. In this context, the possible use of the red seaweed Chondracanthus teedei var. lusitanicus (Gigartinales) as a novel nutraceutical source was investigated. As a result, we highlight the high mineral content of this seaweed, representing 29.35 g 100 g-1 of its dry weight (DW). Despite the low levels of calcium and phosphorus (0.26 and 0.20 g 100 g-1 DW, respectively), this seaweed is an interesting source of nitrogen and potassium (2.13 and 2.29 g-1 DW, accordingly). Furthermore, the high content of carbohydrates (56.03 g 100 g-1 DW), which acts as dietary fibers, confers a low caloric content of this raw food source. Thus, this study demonstrates that C. teedei var. lusitanicus is in fact an unexploited potential resource with the capability to provide key minerals to the human diet with promising nutraceutical properties.


Asunto(s)
Suplementos Dietéticos , Algas Marinas , Animales , Organismos Acuáticos
7.
Artículo en Inglés | MEDLINE | ID: mdl-34067088

RESUMEN

The overexploitation of terrestrial habitats, combined with the ever-growing demand for food, has led to the search for alternative food sources. The importance of seaweeds as food sources has been growing, and their potential as sources of fatty acids (FA) make seaweeds an interesting feedstock for the food and nutraceutical industries. The aim of this study is to assess the potential of five red seaweeds (Asparagospis armata, Calliblepharis jubata, Chondracanthus teedei var. lusitanicus, Gracilaria gracilis, and Grateloupia turuturu) and three brown seaweeds (Colpomenia peregrina, Sargassum muticum and Undaria pinnatifida), harvested in central Portugal, as effective sources of essential FA for food or as dietary supplements. FA were extracted from the biomass, transmethylated to methyl esters, and analyzed through gas chromatography-mass spectrometry. G. gracilis presented the highest content of saturated fatty acids (SFA) (41.49 mg·g-1), whereas C. jubata exhibited the highest content of highly unsaturated fatty acids (HUFA) (28.56 mg·g-1); the three G. turuturu life cycle stages presented prominent SFA and HUFA contents. Omega-6/omega-3 ratios were assessed and, in combination with PUFA+HUFA/SFA ratios, it is suggested that C. jubata and U. pinnatifida may be the algae with highest nutraceutical potential, promoting health benefits and contributing to a balanced dietary intake of fatty acids.


Asunto(s)
Rhodophyta , Algas Marinas , Ácidos Grasos , Ácidos Grasos Esenciales , Ácidos Grasos Insaturados , Humanos , Portugal
8.
Mar Drugs ; 19(3)2021 Mar 19.
Artículo en Inglés | MEDLINE | ID: mdl-33808736

RESUMEN

To exploit the nutraceutical and biomedical potential of selected seaweed-derived polymers in an economically viable way, it is necessary to analyze and understand their quality and yield fluctuations throughout the seasons. In this study, the seasonal polysaccharide yield and respective quality were evaluated in three selected seaweeds, namely the agarophyte Gracilaria gracilis, the carrageenophyte Calliblepharis jubata (both red seaweeds) and the alginophyte Sargassum muticum (brown seaweed). It was found that the agar synthesis of G. gracilis did not significantly differ with the seasons (27.04% seaweed dry weight (DW)). In contrast, the carrageenan content in C. jubata varied seasonally, being synthesized in higher concentrations during the summer (18.73% DW). Meanwhile, the alginate synthesis of S. muticum exhibited a higher concentration (36.88% DW) during the winter. Therefore, there is a need to assess the threshold at which seaweed-derived polymers may have positive effects or negative impacts on human nutrition. Furthermore, this study highlights the three polymers, along with their known thresholds, at which they can have positive and/or negative health impacts. Such knowledge is key to recognizing the paradigm governing their successful deployment and related beneficial applications in humans.


Asunto(s)
Agar/metabolismo , Alginatos/metabolismo , Carragenina/biosíntesis , Gracilaria/metabolismo , Sargassum/metabolismo , Estaciones del Año , Algas Marinas/metabolismo , Agar/efectos adversos , Alginatos/efectos adversos , Carragenina/efectos adversos , Gracilaria/crecimiento & desarrollo , Humanos , Valor Nutritivo , Medición de Riesgo , Sargassum/crecimiento & desarrollo , Algas Marinas/crecimiento & desarrollo
9.
Mar Drugs ; 19(5)2021 Apr 26.
Artículo en Inglés | MEDLINE | ID: mdl-33926129

RESUMEN

Seaweeds are a potential source of bioactive compounds that are useful for biotechnological applications and can be employed in different industrial areas in order to replace synthetic compounds with components of natural origin. Diverse studies demonstrate that there is a solid ground for the exploitation of seaweed bioactive compounds in order to prevent illness and to ensure a better and healthier lifestyle. Among the bioactive algal molecules, phenolic compounds are produced as secondary metabolites with beneficial effects on plants, and also on human beings and animals, due to their inherent bioactive properties, which exert antioxidant, antiviral, and antimicrobial activities. The use of phenolic compounds in pharmaceutical, nutraceutical, cosmetics, and food industries may provide outcomes that could enhance human health. Through the production of healthy foods and natural drugs, bioactive compounds from seaweeds can help with the treatment of human diseases. This review aims to highlight the importance of phenolic compounds from seaweeds, the scope of their production in nature and the impact that these compounds can have on human and animal health through nutraceutical and pharmaceutical products.


Asunto(s)
Suplementos Dietéticos , Ecosistema , Fenoles/metabolismo , Fenoles/farmacología , Algas Marinas/metabolismo , Animales , Humanos , Valor Nutritivo , Fenoles/aislamiento & purificación , Metabolismo Secundario
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA