Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Anal Chem ; 93(26): 9235-9243, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34164981

RESUMEN

Selenium is in many ways an enigmatic element. It is essential for health but toxic in excess, with the difference between the two doses being narrower than for any other element. Environmentally, selenium is of concern due to its toxicity. As the rarest of the essential elements, its low levels often provide challenges to the analytical chemist. X-ray absorption spectroscopy (XAS) provides a powerful tool for in situ chemical speciation but is severely limited by poor spectroscopic resolution arising from core-hole lifetime broadening. Here we explore selenium Kα1 high energy resolution fluorescence detected XAS (HERFD-XAS) as a novel approach for chemical speciation of selenium, in comparison with conventional Se K-edge XAS. We present spectra of a range of selenium species relevant to environmental and life science studies, including spectra of seleno-amino acids, which show strong similarities with S K-edge XAS of their sulfur congeners. We discuss strengths and limitations of HERFD-XAS, showing improvements in both speciation performance and low concentration detection. We also develop a simple method to correct fluorescence self-absorption artifacts, which is generally applicable to any HERFD-XAS experiment.


Asunto(s)
Selenio , Espectroscopía de Absorción de Rayos X
2.
J Agric Food Chem ; 66(39): 10193-10204, 2018 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-30196701

RESUMEN

Stereoisomers of 5-(2-allylsulfinyl)-3,4-dimethylthiolane-2-ol, a family of 3,4-dimethylthiolanes of formula C9H16O2S2 we name ajothiolanes, were isolated from garlic ( Allium sativum) macerates and characterized by a variety of analytical and spectroscopic techniques, including ultraperformance liquid chromatography (UPLC), direct analysis in real time-mass spectrometry (DART-MS), and liquid chromatography-tandem mass spectrometry (LC-MS/MS). Ajothiolanes were found to be spectroscopically identical to a family of previously described compounds named garlicnins B1-4 (C9H16O2S2), whose structures we demonstrate have been misassigned. 2D 13C-13C NMR incredible natural abundance double quantum transfer experiments (INADEQUATE) were used to disprove the claim of nine contiguous carbons in these compounds, while X-ray absorption spectroscopy (XAS) along with computational modeling was used to disprove the claim that these compounds were thiolanesulfenic acids. On the basis of the similarity of their NMR spectra to those of the ajothiolanes, we propose that the structures of previously described, biologically active onionins A1-3 (C9H16O2S2), from extracts of onion ( Allium cepa) and Allium fistulosum, and garlicnin A (C12H20O2S4), from garlic extracts, should also be reassigned, in each case as isomeric mixtures of 5-substituted-3,4-dimethylthiolane-2-ols. We conclude that 3,4-dimethylthiolanes may be a common motif in Allium chemistry. Finally, we show that another garlic extract component, garlicnin D (C7H12O2S3), claimed to have an unprecedented structure, is in fact a known compound from garlic with a structure different from that proposed, namely, 2( E)-3-(methylsulfinyl)-2-propenyl 2-propenyl disulfide.


Asunto(s)
Productos Biológicos/química , Ajo/química , Tiofenos/química , Productos Biológicos/aislamiento & purificación , Cromatografía Líquida de Alta Presión , Espectrometría de Masas , Estructura Molecular , Tiofenos/aislamiento & purificación
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA