Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Sci Rep ; 11(1): 12144, 2021 06 09.
Artículo en Inglés | MEDLINE | ID: mdl-34108508

RESUMEN

In bone regeneration induced by the combination of mesenchymal stromal cells (MSCs) and calcium-phosphate (CaP) materials, osteoclasts emerge as a pivotal cell linking inflammation and bone formation. Favorable outcomes are observed despite short-term engraftments of implanted MSCs, highlighting their major paracrine function and the possible implication of cell death in modulating their secretions. In this work, we focused on the communication from MSCs towards osteoclasts-like cells in vitro. MSCs seeded on a CaP biomaterial or undergoing induced apoptosis produced a conditioned media favoring the development of osteoclasts from human CD14+ monocytes. On the contrary, MSCs' apoptotic secretion inhibited the development of inflammatory multinucleated giant cells formed after IL-4 stimulation. Components of MSCs' secretome before and after apoptotic stress were compared using mass spectrometry-based quantitative proteomics and a complementary immunoassay for major cytokines. CXCR-1 and CXCR-2 ligands, primarily IL-8/CXCL-8 but also the growth-regulated proteins CXCL-1, -2 or -3, were suggested as the major players of MSCs' pro-osteoclastic effect. These findings support the hypothesis that osteoclasts are key players in bone regeneration and suggest that apoptosis plays an important role in MSCs' effectiveness.


Asunto(s)
Apoptosis , Células de la Médula Ósea/citología , Diferenciación Celular , Células Gigantes/patología , Células Madre Mesenquimatosas/citología , Osteoclastos/citología , Osteogénesis , Células de la Médula Ósea/fisiología , Proliferación Celular , Citocinas , Células Gigantes/metabolismo , Humanos , Células Madre Mesenquimatosas/fisiología , Osteoclastos/fisiología
2.
ACS Chem Neurosci ; 4(3): 385-92, 2013 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-23509975

RESUMEN

Access to cerebral tissue is essential to better understand the molecular mechanisms associated with neurodegenerative diseases. In this study, we present, for the first time, a new tool designed to obtain molecular and cellular cerebral imprints in the striatum of anesthetized monkeys. The imprint is obtained during a spatially controlled interaction of a chemically modified micro-silicon chip with the brain tissue. Scanning electron and immunofluorescence microscopies showed homogeneous capture of cerebral tissue. Nano-liquid chromatography-tandem mass spectrometry (nano-LC-MS/MS) analysis of proteins harvested on the chip allowed the identification of 1158 different species of proteins. The gene expression profiles of mRNA extracted from the imprint tool showed great similarity to those obtained via the gold standard approach, which is based on post-mortem sections of the same nucleus. Functional analysis of the harvested molecules confirmed the spatially controlled capture of striatal proteins implicated in dopaminergic regulation. Finally, the behavioral monitoring and histological results establish the safety of obtaining repeated cerebral imprints in striatal regions. These results demonstrate the ability of our imprint tool to explore the molecular content of deep brain regions in vivo. They open the way to the molecular exploration of brain in animal models of neurological diseases and will provide complementary information to current data mainly restricted to post-mortem samples.


Asunto(s)
Cuerpo Estriado/fisiología , Impresión Genómica/fisiología , Análisis de Secuencia por Matrices de Oligonucleótidos/métodos , Silicio , Animales , Cromatografía Liquida/métodos , Cuerpo Estriado/ultraestructura , Haplorrinos , Macaca fascicularis , Actividad Motora/fisiología , Proteómica/métodos , Espectrometría de Masas en Tándem/métodos
3.
FEMS Microbiol Lett ; 314(2): 125-30, 2011 Jan.
Artículo en Inglés | MEDLINE | ID: mdl-21105908

RESUMEN

The ability of Bifidobacterium longum to use intestinal mucus as a metabolizable source was characterized. Bifidobacterium longum biotype longum NCIMB8809 was grown in a chemically semi-defined medium supplemented with human intestinal mucus, and the cytoplasmic protein profiles and several glycosyl hydrolase activities were analysed and compared with those obtained from the same bacterium grown in the absence of mucus. We were able to identify 22 different proteins in the cytoplasmic fraction, of which nine displayed a different concentration in the presence of mucus. Among the proteins whose concentrations varied, we found specific enzymes that are involved in the response to different environmental conditions, and also proteins that mediate interaction with mucus in bacteria. Significant changes in some glycoside-hydrolysing activities were also detected. In addition, stable isotope labelling of amino acids in cell culture demonstrated that B. longum incorporates leucine from the glycoprotein matrix of mucin within its proteins. This study provides the first proteomic data regarding the interaction of B. longum with intestinal mucus, and contributes to the understanding of the behaviour of this intestinal species in its natural ecological niche.


Asunto(s)
Bifidobacterium/crecimiento & desarrollo , Bifidobacterium/metabolismo , Moco/metabolismo , Aminoácidos/metabolismo , Proteínas Bacterianas/análisis , Bifidobacterium/química , Medios de Cultivo/química , Citoplasma/química , Glicoproteínas/metabolismo , Glicósido Hidrolasas/metabolismo , Humanos , Isótopos/metabolismo , Proteoma/análisis , Coloración y Etiquetado/métodos
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA