Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 12 de 12
Filtrar
2.
Front Public Health ; 10: 972136, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-36159249

RESUMEN

The articles published as part of the Frontiers in Public Health research topic, "Investigating exposures and respiratory health in coffee workers" present research findings that better characterize exposures to diacetyl and 2,3-pentanedione and inform our understanding of the health risks posed by these exposures. Although various research groups and organizations have conducted risk assessments to derive occupational exposure limits (OELs) for diacetyl, differences in the data used and assumptions made in these efforts have resulted in a wide range of recommended OELs designed to protect human health. The primary drivers of these differences include the decision to use data from human or animal studies in conducting a quantitative risk assessment, and the application of uncertainty factors (UF) to derive an OEL. This Perspectives paper will discuss the practical implications of these decisions, and present additional commentary on the potential role that the recent investigation of human exposures to relatively low concentrations of α-diketones, specifically diacetyl and 2,3-pentanedione, may play in supporting qualitative or quantitative human health risk assessments.


Asunto(s)
Café , Diacetil , Animales , Diacetil/análisis , Humanos , Cetonas , Pentanonas/análisis , Medición de Riesgo
3.
Front Public Health ; 10: 878907, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35757620

RESUMEN

Coffee production workers can be exposed to inhalational hazards including alpha-diketones such as diacetyl and 2,3-pentanedione. Exposure to diacetyl is associated with the development of occupational lung disease, including obliterative bronchiolitis, a rare and irreversible lung disease. We aimed to identify determinants contributing to task-based exposures to diacetyl and 2,3-pentanedione at 17 U.S. coffee production facilities. We collected 606 personal short-term task-based samples including roasting (n = 189), grinding (n = 74), packaging (n = 203), quality control (QC, n = 44), flavoring (n = 15), and miscellaneous production/café tasks (n = 81), and analyzed for diacetyl and 2,3-pentanedione in accordance with the modified OSHA Method 1013/1016. We also collected instantaneous activity-based (n = 296) and source (n = 312) samples using evacuated canisters. Information on sample-level and process-level determinants relating to production scale, sources of alpha-diketones, and engineering controls was collected. Bayesian mixed-effect regression models accounting for censored data were fit for overall data (all tasks) and specific tasks. Notable determinants identified in univariate analyses were used to fit all plausible models in multiple regression analysis which were summarized using a Bayesian model averaging method. Grinding, flavoring, packaging, and production tasks with ground coffee were associated with the highest short-term and instantaneous-activity exposures for both analytes. Highest instantaneous-sources of diacetyl and 2,3-pentanedione included ground coffee, flavored coffee, liquid flavorings, and off-gassing coffee bins or packages. Determinants contributing to higher exposures to both analytes in all task models included sum of all open storage sources and average percent of coffee production as ground coffee. Additionally, flavoring ground coffee and flavoring during survey contributed to notably higher exposures for both analytes in most, but not all task groups. Alternatively, general exhaust ventilation contributed to lower exposures in all but two models. Additionally, among facilities that flavored, local exhaust ventilation during flavoring processes contributed to lower 2,3-pentanedione exposures during grinding and packaging tasks. Coffee production facilities can consider implementing additional exposure controls for processes, sources, and task-based determinants associated with higher exposures to diacetyl and 2,3-pentanedione, such as isolating, enclosing, and directly exhausting grinders, flavoring mixers, and open storage of off-gassing whole bean and ground coffee, to reduce exposures and minimize risks for lung disease among workers.


Asunto(s)
Café , Diacetil , Enfermedades Pulmonares , Exposición Profesional , Pentanonas , Teorema de Bayes , Diacetil/análisis , Aromatizantes/análisis , Humanos , Exposición Profesional/análisis , Pentanonas/análisis
4.
Front Public Health ; 9: 705225, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34858915

RESUMEN

Coffee production is a global industry with roasteries throughout the world. Workers in this industry are exposed to complex mixtures of gases, dusts, and vapors including carbon monoxide, carbon dioxide, coffee dust, allergens, alpha-diketones, and other volatile organic compounds (VOCs). Adverse respiratory health outcomes such as respiratory symptoms, reduced pulmonary function, asthma, and obliterative bronchiolitis can occur among exposed workers. In response to health hazard evaluations requests received from 17 small- to medium-sized coffee facilities across the United States, the National Institute for Occupational Safety and Health conducted investigations during 2016-2017 to understand the burden of respiratory abnormalities, exposure characteristics, relationships between exposures and respiratory effects, and opportunities for exposure mitigation. Full-shift, task-based, and instantaneous personal and area air samples for diacetyl, 2,3-pentanedione and other VOCs were collected, and engineering controls were evaluated. Medical evaluations included questionnaire, spirometry, impulse oscillometry, and fractional exhaled nitric oxide. Exposure and health assessments were conducted using standardized tools and approaches, which enabled pooling data for aggregate analysis. The pooled data provided a larger population to better address the requestors' concern of the effect of exposure to alpha-diketones on the respiratory heath of coffee workers. This paper describes the rationale for the exposure and health assessment strategy, the approach used to achieve the study objectives, and its advantages and limitations.


Asunto(s)
Bronquiolitis Obliterante , Exposición Profesional , Bronquiolitis Obliterante/etiología , Café/efectos adversos , Diacetil/efectos adversos , Diacetil/análisis , Industria de Alimentos , Humanos , Exposición Profesional/efectos adversos , Exposición Profesional/análisis , Estados Unidos
5.
Front Public Health ; 9: 657987, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-34095061

RESUMEN

Occupational exposure to diacetyl, a butter flavor chemical, can result in obliterative bronchiolitis. Obliterative bronchiolitis is characterized by exertional dyspnea, fixed airflow obstruction, and histopathologic constrictive bronchiolitis, with bronchiolar wall fibrosis leading to luminal narrowing and obliteration. We describe a case of advanced lung disease with histopathology distinct from obliterative bronchiolitis in a 37-year-old male coffee worker following prolonged exposure to high levels of diacetyl and the related compound 2,3-pentanedione, who had no other medical, avocational, or occupational history that could account for his illness. He began working at a coffee facility in the flavoring room and grinding area in 2009. Four years later he moved to the packaging area but continued to flavor and grind coffee at least 1 full day per week. He reported chest tightness and mucous membrane irritation when working in the flavoring room and grinding area in 2010. Beginning in 2014, he developed dyspnea, intermittent cough, and a reduced sense of smell without a work-related pattern. In 2016, spirometry revealed a moderate mixed pattern that did not improve with bronchodilator. Thoracoscopic lung biopsy results demonstrated focal mild cellular bronchiolitis and pleuritis, and focal peribronchiolar giant cells/granulomas, but no evidence of constrictive bronchiolitis. Full-shift personal air-samples collected in the flavoring and grinding areas during 2016 measured diacetyl concentrations up to 84-fold higher than the recommended exposure limit. Medical evaluations indicate this worker developed work-related, airway-centric lung disease, most likely attributable to inhalational exposure to flavorings, with biopsy findings not usual for obliterative bronchiolitis. Clinicians should be aware that lung pathology could vary considerably in workers with suspected flavoring-related lung disease.


Asunto(s)
Bronquiolitis Obliterante , Enfermedades Pulmonares , Adulto , Bronquiolitis Obliterante/inducido químicamente , Café/efectos adversos , Diacetil/efectos adversos , Humanos , Pulmón/química , Masculino
6.
Front Public Health ; 8: 561740, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-33072698

RESUMEN

Roasted coffee and many coffee flavorings emit volatile organic compounds (VOCs) including diacetyl and 2,3-pentanedione. Exposures to VOCs during roasting, packaging, grinding, and flavoring coffee can negatively impact the respiratory health of workers. Inhalational exposures to diacetyl and 2,3-pentanedione can cause obliterative bronchiolitis. This study summarizes exposures to and emissions of VOCs in 17 coffee roasting and packaging facilities that included 10 cafés. We collected 415 personal and 760 area full-shift, and 606 personal task-based air samples for diacetyl, 2,3-pentanedione, 2,3-hexanedione, and acetoin using silica gel tubes. We also collected 296 instantaneous activity and 312 instantaneous source air measurements for 18 VOCs using evacuated canisters. The highest personal full-shift exposure in part per billion (ppb) to diacetyl [geometric mean (GM) 21 ppb; 95th percentile (P95) 79 ppb] and 2,3-pentanedione (GM 15 ppb; P95 52 ppb) were measured for production workers in flavored coffee production areas. These workers also had the highest percentage of measurements above the NIOSH Recommended Exposure Limit (REL) for diacetyl (95%) and 2,3-pentanedione (77%). Personal exposures to diacetyl (GM 0.9 ppb; P95 6.0 ppb) and 2,3-pentanedione (GM 0.7 ppb; P95 4.4 ppb) were the lowest for non-production workers of facilities that did not flavor coffee. Job groups with the highest personal full-shift exposures to diacetyl and 2,3-pentanedione were flavoring workers (GM 34 and 38 ppb), packaging workers (GM 27 and 19 ppb) and grinder operator (GM 26 and 22 ppb), respectively, in flavored coffee facilities, and packaging workers (GM 8.0 and 4.4 ppb) and production workers (GM 6.3 and 4.6 ppb) in non-flavored coffee facilities. Baristas in cafés had mean full-shift exposures below the RELs (GM 4.1 ppb diacetyl; GM 4.6 ppb 2,3-pentanedione). The tasks, activities, and sources associated with flavoring in flavored coffee facilities and grinding in non-flavored coffee facilities, had some of the highest GM and P95 estimates for both diacetyl and 2,3-pentanedione. Controlling emissions at grinding machines and flavoring areas and isolating higher exposure areas (e.g., flavoring, grinding, and packaging areas) from the main production space and from administrative or non-production spaces is essential for maintaining exposure control.


Asunto(s)
Exposición Profesional , Compuestos Orgánicos Volátiles , Café/efectos adversos , Diacetil/efectos adversos , Humanos , Exposición Profesional/análisis , Pentanonas , Estados Unidos , Compuestos Orgánicos Volátiles/análisis
7.
Front Public Health ; 8: 5, 2020.
Artículo en Inglés | MEDLINE | ID: mdl-32083049

RESUMEN

Introduction: Respiratory hazards in the coffee roasting and packaging industry can include asthmagens such as green coffee bean and other dust and alpha-diketones such as diacetyl and 2,3-pentanedione that can occur naturally from roasting coffee or artificially from addition of flavoring to coffee. We sought to describe the burden of respiratory abnormalities among workers at 17 coffee roasting and packaging facilities. Methods: We completed medical surveys at 17 coffee roasting and packaging facilities that included interviewer-administered questionnaires and pulmonary function testing. We summarized work-related symptoms, diagnoses, and spirometry testing results among all participants. We compared health outcomes between participants who worked near flavoring and who did not. Results: Participants most commonly reported nose and eye symptoms, and wheeze, with a work-related pattern for some. Symptoms and pulmonary function tests were consistent with work-related asthma in some participants. About 5% of workers had abnormal spirometry and most improved after bronchodilator. Health outcomes were similar between employees who worked near flavoring and who did not, except employees who worked near flavoring reported more chronic bronchitis and ever receiving a diagnosis of asthma than those who did not work near flavoring. Conclusion: The symptoms and patterns likely represent overlapping health effects of different respiratory hazards, including green coffee bean and other dust that can contribute to work-related asthma, and diacetyl and 2,3-pentanedione that can contribute to obliterative bronchiolitis. Healthcare providers and occupational health and safety practitioners should be aware that workers at coffee roasting and packaging facilities are potentially at risk for occupational lung diseases.


Asunto(s)
Enfermedades Profesionales , Exposición Profesional , Café , Diacetil/análisis , Aromatizantes/análisis , Humanos , Enfermedades Profesionales/inducido químicamente , Exposición Profesional/efectos adversos
9.
J Occup Environ Hyg ; 13(10): 770-81, 2016 10 02.
Artículo en Inglés | MEDLINE | ID: mdl-27105025

RESUMEN

Obliterative bronchiolitis in five former coffee processing employees at a single workplace prompted an exposure study of current workers. Exposure characterization was performed by observing processes, assessing the ventilation system and pressure relationships, analyzing headspace of flavoring samples, and collecting and analyzing personal breathing zone and area air samples for diacetyl and 2,3-pentanedione vapors and total inhalable dust by work area and job title. Mean airborne concentrations were calculated using the minimum variance unbiased estimator of the arithmetic mean. Workers in the grinding/packaging area for unflavored coffee had the highest mean diacetyl exposures, with personal concentrations averaging 93 parts per billion (ppb). This area was under positive pressure with respect to flavored coffee production (mean personal diacetyl levels of 80 ppb). The 2,3-pentanedione exposures were highest in the flavoring room with mean personal exposures of 122 ppb, followed by exposures in the unflavored coffee grinding/packaging area (53 ppb). Peak 15-min airborne concentrations of 14,300 ppb diacetyl and 13,800 ppb 2,3-pentanedione were measured at a small open hatch in the lid of a hopper containing ground unflavored coffee on the mezzanine over the grinding/packaging area. Three out of the four bulk coffee flavorings tested had at least a factor of two higher 2,3-pentanedione than diacetyl headspace measurements. At a coffee processing facility producing both unflavored and flavored coffee, we found the grinding and packaging of unflavored coffee generate simultaneous exposures to diacetyl and 2,3-pentanedione that were well in excess of the NIOSH proposed RELs and similar in magnitude to those in the areas using a flavoring substitute for diacetyl. These findings require physicians to be alert for obliterative bronchiolitis and employers, government, and public health consultants to assess the similarities and differences across the industry to motivate preventive intervention where indicated by exposures above the proposed RELs for diacetyl and 2,3-pentanedione.


Asunto(s)
Contaminantes Ocupacionales del Aire , Café , Diacetil/análisis , Exposición Profesional/análisis , Pentanonas/análisis , Contaminantes Ocupacionales del Aire/análisis , Bronquiolitis Obliterante/prevención & control , Polvo/análisis , Aromatizantes/análisis , Industria de Procesamiento de Alimentos/métodos , Humanos
10.
Am J Ind Med ; 58(12): 1235-45, 2015 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-26523478

RESUMEN

RATIONALE: Obliterative bronchiolitis in former coffee workers prompted a cross-sectional study of current workers. Diacetyl and 2,3-pentanedione levels were highest in areas for flavoring and grinding/packaging unflavored coffee. METHODS: We interviewed 75 (88%) workers, measured lung function, and created exposure groups based on work history. We calculated standardized morbidity ratios (SMRs) for symptoms and spirometric abnormalities. We examined health outcomes by exposure groups. RESULTS: SMRs were elevated 1.6-fold for dyspnea and 2.7-fold for obstruction. The exposure group working in both coffee flavoring and grinding/packaging of unflavored coffee areas had significantly lower mean ratio of forced expiratory volume in 1 s to forced vital capacity and percent predicted mid-expiratory flow than workers without such exposure. CONCLUSION: Current workers have occupational lung morbidity associated with high diacetyl and 2,3-pentanedione exposures, which were not limited to flavoring areas.


Asunto(s)
Bronquiolitis Obliterante/inducido químicamente , Café/química , Industria de Procesamiento de Alimentos , Enfermedades Profesionales/inducido químicamente , Exposición Profesional/efectos adversos , Adulto , Obstrucción de las Vías Aéreas/inducido químicamente , Bronquiolitis Obliterante/epidemiología , Bronquiolitis Obliterante/fisiopatología , Estudios Transversales , Diacetil/análisis , Diacetil/toxicidad , Disnea/inducido químicamente , Femenino , Aromatizantes/análisis , Volumen Espiratorio Forzado , Humanos , Pulmón/fisiopatología , Masculino , Enfermedades Profesionales/epidemiología , Enfermedades Profesionales/fisiopatología , Exposición Profesional/análisis , Pentanonas/análisis , Pentanonas/toxicidad , Respiración , Espirometría , Capacidad Vital , Lugar de Trabajo
11.
J Occup Environ Hyg ; 11(9): 591-603, 2014.
Artículo en Inglés | MEDLINE | ID: mdl-24568319

RESUMEN

Respiratory problems are common among wildland firefighters. However, there are few studies directly linking occupational exposures to respiratory effects in this population. Our objective was to characterize wildland fire fighting occupational exposures and assess their associations with cross-shift changes in lung function. We studied 17 members of the Alpine Interagency Hotshot Crew with environmental sampling and pulmonary function testing during a large wildfire. We characterized particles by examining size distribution and mass concentration, and conducting elemental and morphological analyses. We examined associations between cross-shift lung function change and various analytes, including levoglucosan, an indicator of wood smoke from burning biomass. The levoglucosan component of the wildfire aerosol showed a predominantly bimodal size distribution: a coarse particle mode with a mass median aerodynamic diameter about 12 µm and a fine particle mode with a mass median aerodynamic diameter < 0.5 µm. Levoglucosan was found mainly in the respirable fraction and its concentration was higher for fire line construction operations than for mop-up operations. Larger cross-shift declines in forced expiratory volume in one second were associated with exposure to higher concentrations of respirable levoglucosan (p < 0.05). Paired analyses of real-time personal air sampling measurements indicated that higher carbon monoxide (CO) concentrations were correlated with higher particulate concentrations when examined by mean values, but not by individual data points. However, low CO concentrations did not provide reliable assurance of concomitantly low particulate concentrations. We conclude that inhalation of fine smoke particles is associated with acute lung function decline in some wildland firefighters. Based on short-term findings, it appears important to address possible long-term respiratory health issues for wildland firefighters. [Supplementary materials are available for this article. Go to the publisher's online edition of Journal of Occupational and Environmental Hygiene for the following free supplemental resources: a file containing additional information on historical studies of wildland fire exposures, a file containing the daily-exposure-severity questionnaire completed by wildland firefighter participants at the end of each day, and a file containing additional details of the investigation of correlations between carbon monoxide concentrations and other measured exposure factors in the current study.].


Asunto(s)
Contaminantes Ocupacionales del Aire/efectos adversos , Bomberos , Exposición por Inhalación/efectos adversos , Pulmón/fisiopatología , Exposición Profesional/efectos adversos , Humo/efectos adversos , Adulto , Aerosoles/efectos adversos , Aerosoles/análisis , Aerosoles/química , Contaminantes Ocupacionales del Aire/análisis , Contaminantes Ocupacionales del Aire/química , Biomarcadores/análisis , Pruebas Respiratorias , Carbono/efectos adversos , Carbono/análisis , Monóxido de Carbono/efectos adversos , Monóxido de Carbono/análisis , Femenino , Volumen Espiratorio Forzado , Glucosa/efectos adversos , Glucosa/análogos & derivados , Glucosa/análisis , Glucosa/química , Humanos , Exposición por Inhalación/análisis , Masculino , Exposición Profesional/análisis , Tamaño de la Partícula , Dióxido de Silicio/efectos adversos , Dióxido de Silicio/análisis , Humo/análisis , Espirometría , Encuestas y Cuestionarios
12.
J Occup Environ Med ; 51(2): 164-9, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-19209037

RESUMEN

OBJECTIVES: To investigate evidence that lymph node silicosis can precede parenchymal silicosis. METHODS: The study population was comprised of 264 deceased male uranium miners for whom two or more of four pathologists agreed on the presence or absence of silicosis in lymph nodes and lung parenchyma. We had work histories and silica exposure estimates. RESULTS: Twenty percent of the miners had lymph node silicosis only, 4% had parenchymal silicosis only, and 39% had both. Silica exposure was lower for miners with lymph node silicosis only than for those with both lymph node and parenchymal silicosis. Lymph node silicosis was associated with parenchymal silicosis after adjustment for silica exposure. CONCLUSIONS: Our results are consistent with silicosis potentially occurring in lymph nodes before the parenchyma. Lymph node damage could impair silica clearance and increase the risk for parenchymal silicosis.


Asunto(s)
Ganglios Linfáticos/patología , Minería , Exposición Profesional/efectos adversos , Silicosis/patología , Uranio , Cadáver , Alemania/epidemiología , Humanos , Masculino , Silicosis/epidemiología , Silicosis/etiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA