Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Microbiol ; 4(12): 2511-2522, 2019 12.
Artículo en Inglés | MEDLINE | ID: mdl-31611645

RESUMEN

Many bacterial pathogens express virulence proteins that are translocated into host cells (herein referred to as effectors), where they can interact with target proteins to manipulate host cell processes. These effector-host protein interactions are often dynamic and transient in nature, making them difficult to identify using traditional interaction-based methods. Here, we performed a systematic comparison between proximity-dependent biotin labelling (BioID) and immunoprecipitation coupled with mass spectrometry to investigate a series of Salmonella type 3 secreted effectors that manipulate host intracellular trafficking (SifA, PipB2, SseF, SseG and SopD2). Using BioID, we identified 632 candidate interactions with 381 unique human proteins, collectively enriched for roles in vesicular trafficking, cytoskeleton components and transport activities. From the subset of proteins exclusively identified by BioID, we report that SifA interacts with BLOC-2, a protein complex that regulates dynein motor activity. We demonstrate that the BLOC-2 complex is necessary for SifA-mediated positioning of Salmonella-containing vacuoles, and affects stability of the vacuoles during infection. Our study provides insight into the coordinated activities of Salmonella type 3 secreted effectors and demonstrates the utility of BioID as a powerful, complementary tool to characterize effector-host protein interactions.


Asunto(s)
Proteínas Bacterianas/metabolismo , Interacciones Huésped-Patógeno/fisiología , Transporte de Proteínas/fisiología , Salmonella/fisiología , Vacuolas/metabolismo , Proteínas Bacterianas/genética , Biotina , Técnicas de Silenciamiento del Gen , Células HEK293 , Células HeLa , Interacciones Huésped-Patógeno/genética , Humanos , Péptidos y Proteínas de Señalización Intracelular/genética , Transporte de Proteínas/genética , Salmonella/genética , Infecciones por Salmonella/microbiología , Salmonella typhimurium/genética , Salmonella typhimurium/fisiología , Coloración y Etiquetado
2.
Mol Cell Proteomics ; 14(7): 1781-95, 2015 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-25900982

RESUMEN

The identification of ubiquitin E3 ligase substrates has been challenging, due in part to low-affinity, transient interactions, the rapid degradation of targets and the inability to identify proteins from poorly soluble cellular compartments. SCF(ß-TrCP1) and SCF(ß-TrCP2) are well-studied ubiquitin E3 ligases that target substrates for proteasomal degradation, and play important roles in Wnt, Hippo, and NFκB signaling. Combining 26S proteasome inhibitor (MG132) treatment with proximity-dependent biotin labeling (BioID) and semiquantitative mass spectrometry, here we identify SCF(ß-TrCP1/2) interacting partners. Based on their enrichment in the presence of MG132, our data identify over 50 new putative SCF(ß-TrCP1/2) substrates. We validate 12 of these new substrates and reveal previously unsuspected roles for ß-TrCP in the maintenance of nuclear membrane integrity, processing (P)-body turnover and translational control. Together, our data suggest that ß-TrCP is an important hub in the cellular stress response. The technique presented here represents a complementary approach to more standard IP-MS methods and should be broadly applicable for the identification of substrates for many ubiquitin E3 ligases.


Asunto(s)
Biotina/metabolismo , Proteína Fosfatasa 1/metabolismo , Proteínas Ligasas SKP Cullina F-box/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Proteínas con Repetición de beta-Transducina/metabolismo , Factor 2 Eucariótico de Iniciación/metabolismo , Técnicas de Silenciamiento del Gen , Células HeLa , Humanos , Péptidos y Proteínas de Señalización Intracelular/metabolismo , Proteínas de la Membrana/metabolismo , Complejos Multiproteicos/metabolismo , Membrana Nuclear/metabolismo , Fosforilación , Estabilidad Proteica , Reproducibilidad de los Resultados , Especificidad por Sustrato , Ubiquitina/metabolismo
3.
J Proteomics ; 118: 95-111, 2015 Apr 06.
Artículo en Inglés | MEDLINE | ID: mdl-25452129

RESUMEN

The BioID proximity-based biotin labeling technique was recently developed for the characterization of protein-protein interaction networks [1]. To date, this method has been applied to a number of different polypeptides expressed in cultured cells. Here we report the adaptation of BioID to the identification of protein-protein interactions surrounding the c-MYC oncoprotein in human cells grown both under standard culture conditions and in mice as tumor xenografts. Notably, in vivo BioID yielded >100 high confidence MYC interacting proteins, including >30 known binding partners. Putative novel MYC interactors include components of the STAGA/KAT5 and SWI/SNF chromatin remodeling complexes, DNA repair and replication factors, general transcription and elongation factors, and transcriptional co-regulators such as the DNA helicase protein chromodomain 8 (CHD8). Providing additional confidence in these findings, ENCODE ChIP-seq datasets highlight significant coincident binding throughout the genome for the MYC interactors identified here, and we validate the previously unreported MYC-CHD8 interaction using both a yeast two hybrid analysis and the proximity-based ligation assay. In sum, we demonstrate that BioID can be utilized to identify bona fide interacting partners for a chromatin-associated protein in vivo. This technique will allow for a much improved understanding of protein-protein interactions in a previously inaccessible biological setting. BIOLOGICAL SIGNIFICANCE: The c-MYC (MYC) oncogene is a transcription factor that plays important roles in cancer initiation and progression. MYC expression is deregulated in more than 50% of human cancers, but the role of this protein in normal cell biology and tumor progression is still not well understood, in part because identifying MYC-interacting proteins has been technically challenging: MYC-containing chromatin-associated complexes are difficult to isolate using traditional affinity purification methods, and the MYC protein is exceptionally labile, with a half-life of only ~30 min. Developing a new strategy to gain insight into MYC-containing protein complexes would thus mark a key advance in cancer research. The recently described BioID proximity-based labeling technique represents a promising new complementary approach for the characterization of protein-protein interactions (PPIs) in cultured cells. Here we report that BioID can also be used to characterize protein-protein interactions for a chromatin-associated protein in tumor xenografts, and present a comprehensive, high confidence in vivo MYC interactome. This article is part of a Special Issue entitled: Protein dynamics in health and disease. Guest Editors: Pierre Thibault and Anne-Claude Gingras.


Asunto(s)
Proteínas Cromosómicas no Histona/metabolismo , Proteínas de Unión al ADN/metabolismo , Histona Acetiltransferasas/metabolismo , Neoplasias Experimentales/metabolismo , Proteínas Proto-Oncogénicas c-myc/metabolismo , Factores de Transcripción/metabolismo , Animales , Línea Celular Tumoral , Proteínas Cromosómicas no Histona/genética , Proteínas de Unión al ADN/genética , Xenoinjertos , Histona Acetiltransferasas/genética , Humanos , Lisina Acetiltransferasa 5 , Masculino , Ratones , Ratones Endogámicos NOD , Ratones SCID , Trasplante de Neoplasias , Neoplasias Experimentales/genética , Proteínas Proto-Oncogénicas c-myc/genética , Factores de Transcripción/genética
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA