Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Cell Rep Med ; 4(7): 101097, 2023 07 18.
Artículo en Inglés | MEDLINE | ID: mdl-37413986

RESUMEN

Pregnant women in resource-limited settings are highly susceptible to anemia and iron deficiency, but the etiology of postpartum anemia remains poorly defined. To inform the optimal timing for anemia interventions, changes in iron deficiency-attributable anemia through pregnancy and postpartum need to be understood. In 699 pregnant Papua New Guinean women attending their first antenatal care appointment and following up at birth and 6 and 12 months postpartum, we undertake logistic mixed-effects modeling to determine the effect of iron deficiency on anemia and population attributable fractions, calculated from odds ratios, to quantify the contribution of iron deficiency to anemia. Anemia is highly prevalent during pregnancy and 12 months postpartum, with iron deficiency increasing the odds of anemia during pregnancy and, to a lesser extent, postpartum. Iron deficiency accounts for ≥72% of anemia during pregnancy and 20%-37% postpartum. Early iron supplementation during and between pregnancies could break the cycle of chronic anemia in women of reproductive age.


Asunto(s)
Anemia Ferropénica , Anemia , Deficiencias de Hierro , Recién Nacido , Femenino , Embarazo , Humanos , Anemia Ferropénica/complicaciones , Anemia Ferropénica/epidemiología , Periodo Posparto , Hierro/uso terapéutico , Anemia/epidemiología , Anemia/etiología
2.
Int J Parasitol ; 50(3): 235-252, 2020 03.
Artículo en Inglés | MEDLINE | ID: mdl-32135179

RESUMEN

With emerging resistance to frontline treatments, it is vital that new drugs are identified to target Plasmodium falciparum. One of the most critical processes during parasites asexual lifecycle is the invasion and subsequent egress of red blood cells (RBCs). Many unique parasite ligands, receptors and enzymes are employed during egress and invasion that are essential for parasite proliferation and survival, therefore making these processes druggable targets. To identify potential inhibitors of egress and invasion, we screened the Medicines for Malaria Venture Pathogen Box, a 400 compound library against neglected tropical diseases, including 125 with antimalarial activity. For this screen, we utilised transgenic parasites expressing a bioluminescent reporter, nanoluciferase (Nluc), to measure inhibition of parasite egress and invasion in the presence of the Pathogen Box compounds. At a concentration of 2 µM, we found 15 compounds that inhibited parasite egress by >40% and 24 invasion-specific compounds that inhibited invasion by >90%. We further characterised 11 of these inhibitors through cell-based assays and live cell microscopy, and found two compounds that inhibited merozoite maturation in schizonts, one compound that inhibited merozoite egress, one compound that directly inhibited parasite invasion and one compound that slowed down invasion and arrested ring formation. The remaining compounds were general growth inhibitors that acted during the egress and invasion phase of the cell cycle. We found the sulfonylpiperazine, MMV020291, to be the most invasion-specific inhibitor, blocking successful merozoite internalisation within human RBCs and having no substantial effect on other stages of the cell cycle. This has significant implications for the possible development of an invasion-specific inhibitor as an antimalarial in a combination based therapy, in addition to being a useful tool for studying the biology of the invading parasite.


Asunto(s)
Antimaláricos/farmacología , Evaluación Preclínica de Medicamentos , Plasmodium falciparum/efectos de los fármacos , Animales , Eritrocitos/parasitología , Humanos , Malaria Falciparum/tratamiento farmacológico , Malaria Falciparum/parasitología , Merozoítos/efectos de los fármacos , Piperazina , Piperazinas/farmacología , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Esquizontes/efectos de los fármacos
3.
Elife ; 62017 03 02.
Artículo en Inglés | MEDLINE | ID: mdl-28252383

RESUMEN

Plasmodium falciparum parasites, the causative agents of malaria, modify their host erythrocyte to render them permeable to supplementary nutrient uptake from the plasma and for removal of toxic waste. Here we investigate the contribution of the rhoptry protein RhopH2, in the formation of new permeability pathways (NPPs) in Plasmodium-infected erythrocytes. We show RhopH2 interacts with RhopH1, RhopH3, the erythrocyte cytoskeleton and exported proteins involved in host cell remodeling. Knockdown of RhopH2 expression in cycle one leads to a depletion of essential vitamins and cofactors and decreased de novo synthesis of pyrimidines in cycle two. There is also a significant impact on parasite growth, replication and transition into cycle three. The uptake of solutes that use NPPs to enter erythrocytes is also reduced upon RhopH2 knockdown. These findings provide direct genetic support for the contribution of the RhopH complex in NPP activity and highlight the importance of NPPs to parasite survival.


Asunto(s)
Eritrocitos/parasitología , Interacciones Huésped-Patógeno , Plasmodium falciparum/crecimiento & desarrollo , Plasmodium falciparum/metabolismo , Proteínas Protozoarias/metabolismo , Animales , Citoesqueleto/metabolismo , Humanos , Ratones , Pirimidinas/metabolismo , Vitaminas/metabolismo
4.
Sci Rep ; 6: 37502, 2016 11 22.
Artículo en Inglés | MEDLINE | ID: mdl-27874068

RESUMEN

Plasmodium parasites are responsible for the devastating disease malaria that affects hundreds of millions of people each year. Blood stage parasites establish new permeability pathways (NPPs) in infected red blood cell membranes to facilitate the uptake of nutrients and removal of parasite waste products. Pharmacological inhibition of the NPPs is expected to lead to nutrient starvation and accumulation of toxic metabolites resulting in parasite death. Here, we have screened a curated library of antimalarial compounds, the MMV Malaria Box, identifying two compounds that inhibit NPP function. Unexpectedly, metabolic profiling suggested that both compounds also inhibit dihydroorotate dehydrogense (DHODH), which is required for pyrimidine synthesis and is a validated drug target in its own right. Expression of yeast DHODH, which bypasses the need for the parasite DHODH, increased parasite resistance to these compounds. These studies identify two potential candidates for therapeutic development that simultaneously target two essential pathways in Plasmodium, NPP and DHODH.


Asunto(s)
Antimaláricos/farmacología , Permeabilidad de la Membrana Celular/efectos de los fármacos , Inhibidores Enzimáticos/análisis , Inhibidores Enzimáticos/farmacología , Estadios del Ciclo de Vida/efectos de los fármacos , Oxidorreductasas actuantes sobre Donantes de Grupo CH-CH/metabolismo , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo , Animales , Antimaláricos/análisis , Antimaláricos/química , Proliferación Celular/efectos de los fármacos , Dihidroorotato Deshidrogenasa , Evaluación Preclínica de Medicamentos , Complejo III de Transporte de Electrones/metabolismo , Inhibidores Enzimáticos/química , Eritrocitos/efectos de los fármacos , Eritrocitos/parasitología , Genes Reporteros , Ensayos Analíticos de Alto Rendimiento , Concentración 50 Inhibidora , Luciferasas/metabolismo , Metabolómica , Parásitos/efectos de los fármacos , Parásitos/enzimología , Parásitos/crecimiento & desarrollo , Plasmodium falciparum/efectos de los fármacos , Reproducibilidad de los Resultados , Saccharomyces cerevisiae/metabolismo , Sorbitol/farmacología
5.
Org Biomol Chem ; 14(20): 4617-39, 2016 May 18.
Artículo en Inglés | MEDLINE | ID: mdl-27105169

RESUMEN

Central to malaria pathogenesis is the invasion of human red blood cells by Plasmodium falciparum parasites. Following each cycle of intracellular development and replication, parasites activate a cellular program to egress from their current host cell and invade a new one. The orchestration of this process critically relies upon numerous organised phospho-signaling cascades, which are mediated by a number of central kinases. Parasite kinases are emerging as novel antimalarial targets as they have diverged sufficiently from their mammalian counterparts to allow selectable therapeutic action. Parasite protein kinase A (PfPKA) is highly expressed late in the cell cycle of the parasite blood stage and has been shown to phosphorylate a critical invasion protein, Apical Membrane Antigen 1. This enzyme could therefore be a valuable drug target so we have repurposed a substituted 4-cyano-3-methylisoquinoline that has been shown to inhibit rat PKA with the goal of targeting PfPKA. We synthesised a novel series of compounds and, although many potently inhibit the growth of chloroquine sensitive and resistant strains of P. falciparum, they were found to have minimal activity against PfPKA, indicating that they likely have another target important to parasite cytokinesis and invasion.


Asunto(s)
Antimaláricos/síntesis química , Antimaláricos/farmacología , Diseño de Fármacos , Isoquinolinas/síntesis química , Isoquinolinas/farmacología , Plasmodium falciparum/efectos de los fármacos , Secuencia de Aminoácidos , Antimaláricos/química , Técnicas de Química Sintética , Proteínas Quinasas Dependientes de AMP Cíclico/antagonistas & inhibidores , Proteínas Quinasas Dependientes de AMP Cíclico/química , Evaluación Preclínica de Medicamentos , Isoquinolinas/química , Plasmodium falciparum/enzimología , Plasmodium falciparum/crecimiento & desarrollo
6.
ACS Chem Biol ; 10(4): 1145-54, 2015 Apr 17.
Artículo en Inglés | MEDLINE | ID: mdl-25555060

RESUMEN

Apicomplexan parasites, including Plasmodium falciparum and Toxoplasma gondii, the causative agents of severe malaria and toxoplasmosis, respectively, undergo several critical developmental transitions during their lifecycle. Most important for human pathogenesis is the asexual cycle, in which parasites undergo rounds of host cell invasion, replication, and egress (exit), destroying host cell tissue in the process. Previous work has identified important roles for Protein Kinase G (PKG) and Protein Kinase A (PKA) in parasite egress and invasion, yet little is understood about the regulation of cyclic nucleotides, cGMP and cAMP, that activate these enzymes. To address this, we have focused upon the development of inhibitors of 3',5'-cyclic nucleotide phosphodiesterases (PDEs) to block the breakdown of cyclic nucleotides. This was done by repurposing human PDE inhibitors noting various similarities of the human and apicomplexan PDE binding sites. The most potent inhibitors blocked the in vitro proliferation of P. falciparum and T. gondii more potently than the benchmark compound zaprinast. 5-Benzyl-3-isopropyl-1H-pyrazolo[4,3-d]pyrimidin-7(6H)-one (BIPPO) was found to be a potent inhibitor of recombinant P. falciparum PfPDEα and activated PKG-dependent egress of T. gondii and P. falciparum, likely by promoting the exocytosis of micronemes, an activity that was reversed by a specific Protein Kinase G inhibitor. BIPPO also promotes cAMP-dependent phosphorylation of a P. falciparum ligand critical for host cell invasion, suggesting that the compound inhibits single or multiple PDE isoforms that regulate both cGMP and cAMP levels. BIPPO is therefore a useful tool for the dissection of signal transduction pathways in apicomplexan parasites.


Asunto(s)
Inhibidores de Fosfodiesterasa/química , Inhibidores de Fosfodiesterasa/farmacología , Plasmodium falciparum/efectos de los fármacos , Toxoplasma/efectos de los fármacos , Antiprotozoarios/síntesis química , Antiprotozoarios/química , Antiprotozoarios/farmacología , Técnicas de Química Sintética , AMP Cíclico/metabolismo , GMP Cíclico/metabolismo , Evaluación Preclínica de Medicamentos/métodos , Femenino , Humanos , Inhibidores de Fosfodiesterasa/síntesis química , Fosforilación/efectos de los fármacos , Plasmodium falciparum/fisiología , Purinonas/farmacología , Pirazoles/química , Pirazoles/farmacología , Pirimidinonas/química , Pirimidinonas/farmacología , Alineación de Secuencia , Homología de Secuencia de Aminoácido , Homología Estructural de Proteína , Toxoplasma/enzimología , Toxoplasma/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA