RESUMEN
This study investigated the effect of different prenatal nutrition approaches in 126 pregnant Nellore cows on reproductive and nutrigenetic traits of the male offspring during the finishing phase. For that purpose, three nutritional treatments were used in these cows during pregnancy: PP - protein-energy supplementation in the final third, FP - protein-energy supplementation during the entire pregnancy, and NP - (control) only mineral supplementation. The male progeny (63 bulls; 665 ± 28 days of age) were evaluated for scrotal circumference, seminal traits, number of Sertoli cells and testicular area. We performed a genomic association (700 K SNPs) for scrotal circumference at this age. In addition, a functional enrichment was performed in search of significant metabolic pathways (P < 0.05) with inclusion of genes that are expressed in these genomic windows by the MetaCore software. With the exception of major sperm defects (P < 0.1), the other phenotypes showed no difference between prenatal treatments. We found genes and metabolic pathways (P < 0.05) that are associated with genomic windows (genetic variance explained >1%) in different treatments. These molecular findings indicate that there is genotype-environment interaction among the different prenatal treatments and that the FP treatment showed greater major sperm defects compared to the NP treatment.
Asunto(s)
Nutrigenómica , Semen , Masculino , Femenino , Embarazo , Bovinos , Animales , Reproducción , Polimorfismo de Nucleótido Simple , Suplementos DietéticosRESUMEN
This study investigated the effect of prenatal nutrition on liver metabolome and on body (BW) and liver weight (LW) of Nellore bulls at slaughter. Three treatments were applied in 126 cows during pregnancy: NPcontrol (mineral supplementation); PPprotein-energy supplementation in the third trimester; and FPprotein-energy supplementation during the entire pregnancy. Offspring BW and LW were evaluated, and a targeted metabolomics analysis was performed on their livers (n = 18, 22.5 ± 1 months of age). Data were submitted to principal component analysis (PCA), analysis of variance (ANOVA), enrichment analysis, and Pearson's correlation analysis. The phenotypes did not show differences between treatments (p > 0.05). Metabolites PCA showed an overlap of treatment clusters in the analysis. We found significant metabolites in ANOVA (p ≤ 0.05; Glycine, Hydroxytetradecadienylcarnitine, Aminoadipic acid and Carnosine). Enrichment analysis revealed some biological processes (Histidine metabolism, beta-Alanine metabolism, and Lysine degradation). Pearson's correlation analysis showed 29 significant correlated metabolites with BW and 1 metabolite correlated with LW. In summary, prenatal nutrition did not show effects on the phenotypes evaluated, but affected some metabolites and biological pathways, mainly related to oxidative metabolism. In addition, BW seems to influence the hepatic metabolome more than LW, due to the amount and magnitude of correlations found.
RESUMEN
This study evaluated the effects of prenatal nutrition on body weight (BW), average daily gain (ADG), rump fat thickness (RFT), backfat thickness (BFT), ribeye area (REA), muscle cell area (MCA), and the number of cells in REA (NCREA) of young Nellore bulls during the rearing period. After pregnancy confirmation (30 days of pregnancy), 126 Nellore cows were separated into three prenatal nutritional treatments (NP (control; 0.03% of BW), only mineral supplementation; PP (0.3% of BW), protein-energy supplementation in the final third; and FP (0.3% of BW) protein-energy supplementation during the entire pregnancy). After calving, all animals were submitted to the same environmental conditions (sanitary and nutritional) and the different supplementation protocols ceased. The males (63 bulls) were evaluated during the entire rearing phase (210 ± 28 days to 540 ± 28 days of age) to weight gain (BW and ADG), carcass characteristics (RFT, BFT, and REA), and for histological assessments (MCA and NCREA; 7 animals per treatment randomly selected). All phenotypes were subjected to an analysis of variance. The different prenatal stimuli had no effect on BFT, RFT, MCA, and NCREA (P > 0.05); however, prenatal nutrition influenced BW of the animals during the rearing phase (P < 0.01) and showed a tendency on ADG (P = 0.09) and REA (P = 0.08). In conclusion, the offspring from FP treatment showed greater BW during the rearing phase in comparison to the NP group. This is related to a greater protein offered in prenatal nutrition, increasing muscle development during the gestational period.