Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Métodos Terapéuticos y Terapias MTCI
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Gerontol A Biol Sci Med Sci ; 78(12): 2435-2448, 2023 12 01.
Artículo en Inglés | MEDLINE | ID: mdl-37068054

RESUMEN

Advancing age and many disease states are associated with declines in nicotinamide adenine dinucleotide (NAD+) levels. Preclinical studies suggest that boosting NAD+ abundance with precursor compounds, such as nicotinamide riboside or nicotinamide mononucleotide, has profound effects on physiological function in models of aging and disease. Translation of these compounds for oral supplementation in humans has been increasingly studied within the last 10 years; however, the clinical evidence that raising NAD+ concentrations can improve physiological function is unclear. The goal of this review was to synthesize the published literature on the effects of chronic oral supplementation with NAD+ precursors on healthy aging and age-related chronic diseases. We identified nicotinamide riboside, nicotinamide riboside co-administered with pterostilbene, and nicotinamide mononucleotide as the most common candidates in investigations of NAD+-boosting compounds for improving physiological function in humans. Studies have been performed in generally healthy midlife and older adults, adults with cardiometabolic disease risk factors such as overweight and obesity, and numerous patient populations. Supplementation with these compounds is safe, tolerable, and can increase the abundance of NAD+ and related metabolites in multiple tissues. Dosing regimens and study durations vary greatly across interventions, and small sample sizes limit data interpretation of physiological outcomes. Limitations are identified and future research directions are suggested to further our understanding of the potential efficacy of NAD+-boosting compounds for improving physiological function and extending human health span.


Asunto(s)
NAD , Mononucleótido de Nicotinamida , Humanos , Anciano , NAD/metabolismo , Mononucleótido de Nicotinamida/metabolismo , Envejecimiento , Obesidad , Suplementos Dietéticos
2.
Nitric Oxide ; 125-126: 31-39, 2022 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-35705144

RESUMEN

Aging is associated with a decline in physiological function and exercise performance. These effects are mediated, at least in part, by an age-related decrease in the bioavailability of nitric oxide (NO), a ubiquitous gasotransmitter and regulator of myriad physiological processes. The decrease in NO bioavailability with aging is especially apparent in sedentary individuals, whereas older, physically active individuals maintain higher levels of NO with advancing age. Strategies which enhance NO bioavailability (including nutritional supplementation) have been proposed as a potential means of reducing the age-related decrease in physiological function and enhancing exercise performance and may be of interest to a range of older individuals including those taking part in competitive sport. In this brief review we discuss the effects of aging on physiological function and endurance exercise performance, and the potential role of changes in NO bioavailability in these processes. We also provide a summary of current evidence for dietary supplementation with substrates for NO production - including inorganic nitrate and nitrite, l-arginine and l-citrulline - for improving exercise capacity/performance in older adults. Additionally, we discuss the (limited) evidence on the effects of (poly)phenols and other dietary antioxidants on NO bioavailability in older individuals. Finally, we provide suggestions for future research.


Asunto(s)
Citrulina , Óxido Nítrico , Anciano , Envejecimiento , Atletas , Citrulina/farmacología , Suplementos Dietéticos , Ejercicio Físico/fisiología , Humanos , Nitratos/farmacología
3.
J Am Heart Assoc ; 10(13): e020980, 2021 07 06.
Artículo en Inglés | MEDLINE | ID: mdl-34184544

RESUMEN

Background High-resistance inspiratory muscle strength training (IMST) is a novel, time-efficient physical training modality. Methods and Results We performed a double-blind, randomized, sham-controlled trial to investigate whether 6 weeks of IMST (30 breaths/day, 6 days/week) improves blood pressure, endothelial function, and arterial stiffness in midlife/older adults (aged 50-79 years) with systolic blood pressure ≥120 mm Hg, while also investigating potential mechanisms and long-lasting effects. Thirty-six participants completed high-resistance IMST (75% maximal inspiratory pressure, n=18) or low-resistance sham training (15% maximal inspiratory pressure, n=18). IMST was safe, well tolerated, and had excellent adherence (≈95% of training sessions completed). Casual systolic blood pressure decreased from 135±2 mm Hg to 126±3 mm Hg (P<0.01) with IMST, which was ≈75% sustained 6 weeks after IMST (P<0.01), whereas IMST modestly decreased casual diastolic blood pressure (79±2 mm Hg to 77±2 mm Hg, P=0.03); blood pressure was unaffected by sham training (all P>0.05). Twenty-four hour systolic blood pressure was lower after IMST versus sham training (P=0.01). Brachial artery flow-mediated dilation improved ≈45% with IMST (P<0.01) but was unchanged with sham training (P=0.73). Human umbilical vein endothelial cells cultured with subject serum sampled after versus before IMST exhibited increased NO bioavailability, greater endothelial NO synthase activation, and lower reactive oxygen species bioactivity (P<0.05). IMST decreased C-reactive protein (P=0.05) and altered select circulating metabolites (targeted plasma metabolomics) associated with cardiovascular function. Neither IMST nor sham training influenced arterial stiffness (P>0.05). Conclusions High-resistance IMST is a safe, highly adherable lifestyle intervention for improving blood pressure and endothelial function in midlife/older adults with above-normal initial systolic blood pressure. Registration URL: https://www.clinicaltrials.gov; Unique identifier: NCT03266510.


Asunto(s)
Presión Sanguínea , Ejercicios Respiratorios , Endotelio Vascular/metabolismo , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Hipertensión/terapia , Inhalación , Óxido Nítrico/metabolismo , Estrés Oxidativo , Músculos Respiratorios , Anciano , Biomarcadores/sangre , Células Cultivadas , Colorado , Método Doble Ciego , Endotelio Vascular/fisiopatología , Femenino , Humanos , Hipertensión/sangre , Hipertensión/diagnóstico , Hipertensión/fisiopatología , Masculino , Persona de Mediana Edad , Factores de Tiempo , Resultado del Tratamiento
4.
Artículo en Inglés | MEDLINE | ID: mdl-34527888

RESUMEN

Kinesiology tape (KNT) is commonly used for injury prevention and as part of rehabilitation to treat muscle and joint pain. KNT is purported to increase local blood flow by lifting the skin and reducing local pressure. Whether or not skin blood flow is increased by KNT is not presently known. We carried out 2 experiments to elucidate the effects of KNT on skin blood flow. Protocol 1: KNT was applied to the skin at 0%, 25%, 50%, and 100% relative tension. Red cell flux, an index of skin blood flow, was measured by laser Doppler flowmetry (LDF) at each site and at a no-tape control site. There was an overall effect of tape on cutaneous vascular conductance (CVC: LDF/MAP) (KNT: 0.12 (95% confidence interval: 0.10, 0.14), control 0.08 (0.07, 0.10) flux•mmHg-1; p<0.01), but no effect of tension (all p>0.05). Subjects kept KNT on for 3 days then returned for follow-up testing. CVC was not changed after 3 days of KNT application (p=0.07). Protocol 2: KNT was applied to the skin with and without convolutions. There was an overall effect of tape on CVC (KNT: 0.30 (0.21, 0.39), control 0.15 (0.09, 0.21) flux•mmHg-1; p=0.03), but no difference between KNT applied with or without convolutions (all p>0.05). These data suggest that KNT modestly increases microvascular blood flow, regardless of tension or presence of convolutions.

5.
Microvasc Res ; 107: 39-45, 2016 09.
Artículo en Inglés | MEDLINE | ID: mdl-27131832

RESUMEN

Menthol, the active ingredient in several topically applied analgesics, activates transient receptor potential melastatin 8 (TRPM8) receptors on sensory nerves and on the vasculature inducing a cooling sensation on the skin. Ilex paraguariensis is also a common ingredient in topical analgesics that has potential vasoactive properties and may alter the mechanisms of action of menthol. We sought to characterize the microvascular effects of topical menthol and ilex application and to determine the mechanism(s) through which these compounds may independently and combined alter cutaneous blood flow. We hypothesized that menthol would induce vasoconstriction and that ilex would not alter skin blood flow (SkBF). Three separate protocols were conducted to examine menthol and ilex-mediated changes in SkBF. In protocol 1, placebo, 4% menthol, 0.7% ilex, and combination menthol+ilex gels were applied separately to the skin and red cell flux was continuously measured utilizing laser speckle contrast imaging (LSCI). In protocol 2, seven concentrations of menthol gel (0.04%, 0.4%, 1%, 2%, 4%, 7%, 8%) were applied to the skin to model the dose-response curve. In protocol 3, placebo, menthol, ilex, and menthol+ilex gels were applied to skin under local thermal control (34°C) both with and without sensory nerve blockage (topical lidocaine 4%). Post-occlusive reactive hyperemia (PORH) and local heating (42°C) protocols were conducted to determine the relative contribution of endothelium derived hyperpolarizing factors (EDHFs)/sensory nerves and nitric oxide (NO), respectively. Red cell flux was normalized to mean arterial pressure expressed as cutaneous vascular conductance (CVC: flux·mmHg(-1)) in all protocols. Topical menthol application increased SkBF compared to placebo (3.41±0.33 vs 1.1±0.19CVC: p<0.001). During the dose-response, SkBF increased with increasing doses of menthol (main effect, p<0.05) with an ED50 of 1.0%. Similarly, SkBF was increased after menthol application during PORH (3.62±0.29 vs. 2.50±0.21flux·mmHg(-1); p<0.001), but not local heating (2.98±0.24 vs 2.86±0.32flux·mmHg(-1); p=0.44). Concurrent sensory nerve inhibition attenuated menthol-mediated vasodilation at thermoneutral baseline (1.29±0.19flux·mmHg(-1); p<0.001) and during PORH (2.79±0.28flux·mmHg(-1); p<0.001), but not during local heating (3.45±0.21flux·mmHg(-1); p=0.1). Topically applied menthol, but not ilex, dose-dependently increases blood flow in the cutaneous microvasculature. This increase in blood flow is mediated, in-part by sensory nerves and EDHFs.


Asunto(s)
Analgésicos/administración & dosificación , Ilex paraguariensis , Mentol/administración & dosificación , Microcirculación/efectos de los fármacos , Extractos Vegetales/administración & dosificación , Piel/irrigación sanguínea , Vasodilatación/efectos de los fármacos , Vasodilatadores/administración & dosificación , Administración Cutánea , Adulto , Analgésicos/aislamiento & purificación , Factores Biológicos/metabolismo , Velocidad del Flujo Sanguíneo , Relación Dosis-Respuesta a Droga , Método Doble Ciego , Femenino , Humanos , Ilex paraguariensis/química , Flujometría por Láser-Doppler , Masculino , Óxido Nítrico/metabolismo , Extractos Vegetales/aislamiento & purificación , Flujo Sanguíneo Regional , Células Receptoras Sensoriales/efectos de los fármacos , Células Receptoras Sensoriales/metabolismo , Factores de Tiempo , Adulto Joven
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA