Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Environ Geochem Health ; 40(4): 1437-1448, 2018 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-29288399

RESUMEN

Aristolochic acids (AAs) are carcinogenic and nephrotoxic plant alkaloids present in Aristolochia species, used in traditional medicine. Recent biomolecular and environmental studies have incriminated these toxins as an etiological agent in Balkan endemic nephropathy (BEN), a severe kidney disease occurring in the Balkan Peninsula. The questions on how the susceptible populations are exposed to these toxins have not yet been clearly answered. Exposure to AAs through the food chain, and environmental pollution (soil/dust), could provide an explanation for the presence of BEN in the countries where no folkloric use of the plant has been documented (Bulgaria, Croatia). Additional exposure pathways are likely to occur, and we have shown previously that AAs can contaminate crop plants through absorption from soil, under controlled laboratory environment. Here, we attempt to provide additional support to this potential exposure pathway, by revealing the presence of AAI in soil and soil organic matter samples collected from BEN and non-BEN areas. The samples were processed in order to be analyzed by high-pressure liquid chromatography, and ion trap mass spectrometry. Our results showed the presence of AAI in small concentrations, both in BEN and non-BEN soils, especially where Aristolochia plants and seeds were present.


Asunto(s)
Ácidos Aristolóquicos/toxicidad , Nefropatía de los Balcanes/inducido químicamente , Exposición a Riesgos Ambientales , Sustancias Húmicas , Contaminantes del Suelo/toxicidad , Ácidos Aristolóquicos/análisis , Cromatografía Líquida de Alta Presión , Productos Agrícolas , Humanos , Espectrometría de Masas , Estaciones del Año , Contaminantes del Suelo/análisis , Espectrofotometría Ultravioleta
2.
Biomed Pharmacother ; 83: 1095-1104, 2016 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-27551755

RESUMEN

Ursolic and oleanolic acids have been brought into the spotlight of research due to their chemopreventive, anti-inflammatory and immunomodulatory properties. The most important disadvantage of ursolic and oleanolic acids is their weak water solubility which limits their bioavailability. Pentacyclic triterpenes can form inclusion complexes with different types of cyclodextrins which provide the hydrophilic matrix requested for the molecular dispersion of drugs in order to become more water soluble. The aim of the current study is the complexation of ursolic and oleanolic acids with hydrophilic cyclodextrins in order to achieve an improvement of their pharmacological effect. After the virtual screening of the binding affinities between ursolic and oleanolic acids and various cyclodextrins, 2-hydroxypropyl-ß-cyclodextrin and 2-hydroxypropil-γ-cyclodextrin were selected as host-molecules for the inclusion complexation. Using the scanning electron microscopy, differential scanning calorimetry and X-ray diffraction the formation of real inclusion complexes between ursolic and oleanolic acids and the two cyclodextrins was confirmed. The anti-proliferative potential of the complexes was tested in vitro on several melanoma cell lines, using the pure compounds as reference. The complexes exhibited higher in vitro anti-proliferative activity as compared to the pure compounds; this improvement was significant for ursolic acid complexes, the highest activity being reported for the 2-hydroxypropil-γ-cyclodextrin complex. Weaker results were recorded for the oleanolic acid complexes where 2-hydroxypropyl-ß-cyclodextrin proved to be the most fitted inclusion partner. The entrapment of the two active compounds inside ramified hydrophilic cyclodextrins proved to be a suitable option to increase their anti-proliferative activity.


Asunto(s)
Antineoplásicos/farmacología , Interacciones Hidrofóbicas e Hidrofílicas , Ácido Oleanólico/farmacología , Triterpenos/farmacología , beta-Ciclodextrinas/farmacología , gamma-Ciclodextrinas/farmacología , 2-Hidroxipropil-beta-Ciclodextrina , Animales , Rastreo Diferencial de Calorimetría , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Evaluación Preclínica de Medicamentos , Concentración 50 Inhibidora , Ratones , Simulación del Acoplamiento Molecular , Ácido Oleanólico/química , Triterpenos/química , Difracción de Rayos X , Ácido Ursólico
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA