Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Métodos Terapéuticos y Terapias MTCI
Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Neuron ; 92(6): 1368-1382, 2016 Dec 21.
Artículo en Inglés | MEDLINE | ID: mdl-28009277

RESUMEN

Frontal cortex plays a central role in the control of voluntary movements, which are typically guided by sensory input. Here, we investigate the function of mouse whisker primary motor cortex (wM1), a frontal region defined by dense innervation from whisker primary somatosensory cortex (wS1). Optogenetic stimulation of wM1 evokes rhythmic whisker protraction (whisking), whereas optogenetic inactivation of wM1 suppresses initiation of whisking. Whole-cell membrane potential recordings and silicon probe recordings of action potentials reveal layer-specific neuronal activity in wM1 at movement initiation, and encoding of fast and slow parameters of movements during whisking. Interestingly, optogenetic inactivation of wS1 caused hyperpolarization and reduced firing in wM1, together with reduced whisking. Optogenetic stimulation of wS1 drove activity in wM1 with complex dynamics, as well as evoking long-latency, wM1-dependent whisking. Our results advance understanding of a well-defined frontal region and point to an important role for sensory input in controlling motor cortex.


Asunto(s)
Corteza Motora/fisiología , Movimiento/fisiología , Vibrisas/inervación , Potenciales de Acción/fisiología , Animales , Femenino , Masculino , Potenciales de la Membrana/fisiología , Ratones , Optogenética , Técnicas de Placa-Clamp , Periodicidad , Corteza Somatosensorial/fisiología , Vibrisas/fisiología
2.
Nat Neurosci ; 15(3): 370-2, 2012 Jan 22.
Artículo en Inglés | MEDLINE | ID: mdl-22267163

RESUMEN

We investigated the impact of thalamus on ongoing cortical activity in the awake, behaving mouse. We demonstrate that the desynchronized cortical state during active behavior is driven by a centrally generated increase in thalamic action potential firing, which can also be mimicked by optogenetic stimulation of the thalamus. The thalamus therefore is key in controlling cortical states.


Asunto(s)
Sincronización Cortical/fisiología , Corteza Somatosensorial/fisiología , Tálamo/fisiología , Potenciales de Acción/fisiología , Vías Aferentes/fisiología , Animales , Channelrhodopsins , Desnervación , Estimulación Eléctrica/métodos , Análisis de Fourier , Ratones , Ratones Transgénicos , Neuronas/fisiología , Corteza Somatosensorial/citología , Tálamo/citología , Vibrisas/inervación , Vigilia
3.
Eur J Neurosci ; 20(10): 2691-6, 2004 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-15548212

RESUMEN

Corticothalamic terminals on thalamic reticular (RE) neurons account for most synapses from afferent pathways onto this nucleus and these inputs are more powerful than those from axon collaterals of thalamocortical neurons. Given the supremacy of cortical inputs, we analysed here the characteristics and possible mechanisms underlying a secondary component of the cortically elicited depolarization in RE neurons, recorded in cats under barbiturate anesthesia. Electrical stimulation of corticothalamic axons in the internal capsule evoked fixed and short-latency excitatory postsynaptic potentials (EPSPs) that, by increasing stimulation intensity and at hyperpolarized levels (< -70 mV), developed into low-threshold spikes and spindle oscillations. The threshold for spindle oscillations was 60% higher than that required for evoking minimal EPSPs. The evoked EPSPs included a secondary depolarizing component, which appeared approximately 5 ms after the peak of the initial component and was voltage dependent, i.e. most prominent between -70 mV and -85 mV, while being greatly reduced or absent at more hyperpolarized levels. The secondary depolarizing component was sensitive to QX-314 in the recording micropipette. We suggest that the secondary component of cortically evoked EPSPs in RE neurons is due to the dendritic activation of T-currents, with a probable contribution of the persistent Na+ current. This late component affected the integrative properties of RE neurons, including their spiking output and temporal summation of incoming cortical inputs.


Asunto(s)
Potenciales Postsinápticos Excitadores/fisiología , Lidocaína/análogos & derivados , Neuronas/fisiología , Tálamo/citología , Anestésicos Locales/farmacología , Animales , Gatos , Corteza Cerebral/fisiología , Corteza Cerebral/efectos de la radiación , Relación Dosis-Respuesta en la Radiación , Vías Eferentes/fisiología , Vías Eferentes/efectos de la radiación , Estimulación Eléctrica/métodos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/efectos de la radiación , Lidocaína/farmacología , Potenciales de la Membrana/fisiología , Potenciales de la Membrana/efectos de la radiación , Neuronas/efectos de los fármacos , Neuronas/efectos de la radiación , Tálamo/efectos de los fármacos , Tálamo/efectos de la radiación , Factores de Tiempo
4.
Eur J Neurosci ; 20(1): 111-9, 2004 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-15245484

RESUMEN

Thalamic reticular (RE) neurons are crucially implicated in brain rhythms. Here, we report that RE neurons of adult cats, recorded and stained intracellularly in vivo, displayed spontaneously occurring spikelets, which are characteristic of central neurons that are coupled electrotonically via gap junctions. Spikelets occurred spontaneously during spindles, an oscillation in which RE neurons play a leading role, as well as during interspindle lulls. They were significantly different from excitatory postsynaptic potentials and also distinct from fast prepotentials that are presumably dendritic spikes generated synaptically. Spikelets were strongly reduced by halothane, a blocker of gap junctions. Multi-site extracellular recordings performed before, during and after administration of halothane demonstrated a role for electrical coupling in the synchronization of spindling activity within the RE nucleus. Finally, computational models of RE neurons predicted that gap junctions between these neurons could mediate the spread of low-frequency activity at great distances. These experimental and modeling data suggest that electrotonic coupling within the RE nucleus plays an important role in the generation and synchronization of low-frequency (spindling) activities in the thalamus.


Asunto(s)
Uniones Comunicantes/fisiología , Modelos Animales , Modelos Neurológicos , Neuronas/fisiología , Tálamo/citología , Potenciales de Acción/fisiología , Anestésicos por Inhalación/farmacología , Animales , Gatos , Potenciales Postsinápticos Excitadores/efectos de los fármacos , Potenciales Postsinápticos Excitadores/fisiología , Uniones Comunicantes/efectos de los fármacos , Halotano/farmacología , Neuronas/clasificación , Neuronas/efectos de los fármacos , Técnicas de Placa-Clamp/métodos , Transmisión Sináptica , Tálamo/fisiología , Factores de Tiempo
5.
J Neurophysiol ; 91(5): 1990-8, 2004 May.
Artículo en Inglés | MEDLINE | ID: mdl-15069096

RESUMEN

To study the interactions between thalamic and cortical inputs onto neocortical neurons, we used paired-pulse stimulation (PPS) of thalamic and cortical inputs as well as PPS of two cortical or two thalamic inputs that converged, at different time intervals, onto intracellularly recorded cortical and thalamocortical neurons in anesthetized cats. PPS of homosynaptic cortico-cortical pathways produced facilitation, depression, or no significant effects in cortical pathways, whereas cortical responses to thalamocortical inputs were mostly facilitated at both short and long intervals. By contrast, heterosynaptic interactions between either cortical and thalamic, or thalamic and cortical, inputs generally produced decreases in the peak amplitudes and depolarization area of evoked excitatory postsynaptic potentials (EPSPs), with maximal effect at approximately 10 ms and lasting from 60 to 100 ms. All neurons tested with thalamic followed by cortical stimuli showed a decrease in the apparent input resistance (R(in)), the time course of which paralleled that of decreased responses, suggesting that shunting is the factor accounting for EPSP's decrease. Only half of neurons tested with cortical followed by thalamic stimuli displayed changes in R(in). Spike shunting in the thalamus may account for those cases in which decreased synaptic responsiveness of cortical neurons was not associated with decreased R(in) because thalamocortical neurons showed decreased firing probability during cortical stimulation. These results suggest a short-lasting but strong shunting between thalamocortical and cortical inputs onto cortical neurons.


Asunto(s)
Corteza Cerebral/fisiología , Neuronas/fisiología , Sinapsis/fisiología , Tálamo/fisiología , Potenciales de Acción/efectos de los fármacos , Potenciales de Acción/fisiología , Animales , Biorretroalimentación Psicológica/fisiología , Gatos , Corteza Cerebral/citología , Estimulación Eléctrica , Electroencefalografía , Electrofisiología , Potenciales Postsinápticos Excitadores/fisiología , Cinética , Vías Nerviosas/citología , Vías Nerviosas/fisiología , Tálamo/citología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA