Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
Intervalo de año de publicación
1.
J Evol Biol ; 37(1): 62-75, 2024 Jan 29.
Artículo en Inglés | MEDLINE | ID: mdl-38285658

RESUMEN

Associating with plant hosts is thought to have elevated the diversification of insect herbivores, which comprise the majority of global species diversity. In particular, there is considerable interest in understanding the genetic changes that allow host-plant shifts to occur in pest insects and in determining what aspects of functional genomic diversity impact host-plant breadth. Insect chemoreceptors play a central role in mediating insect-plant interactions, as they directly influence plant detection and sensory stimuli during feeding. Although chemosensory genes evolve rapidly, it is unclear how they evolve in response to host shifts and host specialization. We investigate whether selection at chemosensory genes is linked to host-plant expansion from the buffalo burr, Solanum rostratum, to potato, Solanum tuberosum, in the super-pest Colorado potato beetle (CPB), Leptinotarsa decemlineata (Coleoptera: Chrysomelidae). First, to refine our knowledge of CPB chemosensory genes, we developed novel gene expression data for the antennae and maxillary-labial palps. We then examine patterns of selection at these loci within CPB, as well as compare whether rates of selection vary with respect to 9 closely related, non-pest Leptinotarsa species that vary in diet breadth. We find that rates of positive selection on olfactory receptors are higher in host-plant generalists, and this signal is particularly strong in CPB. These results provide strong candidates for further research on the genetic basis of variation in insect chemosensory performance and novel targets for pest control of a notorious super-pest.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Escarabajos/genética , Solanum tuberosum/genética , Genómica , Dieta , Colorado
2.
Mol Ecol ; 31(21): 5568-5580, 2022 11.
Artículo en Inglés | MEDLINE | ID: mdl-35984732

RESUMEN

How invasive species cope with novel selective pressures with limited genetic variation is a fundamental question in molecular ecology. Several mechanisms have been proposed, but they can lack generality. Here, we addressed an alternative solution, polygenic adaptation, wherein traits that arise from multiple combinations of loci may be less sensitive to loss of variation during invasion. We tested the polygenic signal of environmental adaptation of Colorado potato beetle (CPB) introduced in Eurasia. Population genomic analyses showed declining genetic diversity in the eastward expansion of Eurasian populations, and weak population genetic structure (except for the invasion fronts in Asia). Demographic history showed that all populations shared a strong bottleneck about 100 years ago when CPB was introduced to Europe. Genome scans revealed a suite of genes involved in activity regulation functions that are plausibly related to cold stress, including some well-founded functions (e.g., the activity of phosphodiesterase, the G-protein regulator) and discrete functions. Such polygenic architecture supports the hypothesis that polygenic adaptation and potentially genetic redundancy can fuel the adaptation of CPB despite strong genetic depletion, thus representing a promising general mechanism for resolving the genetic paradox of invasion. More broadly, most complex traits based on polygenes may be less sensitive to invasive bottlenecks, thus ensuring the evolutionary success of invasive species in novel environments.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Escarabajos/genética , Herencia Multifactorial/genética , Especies Introducidas , Hidrolasas Diéster Fosfóricas/genética
3.
Mol Biol Evol ; 39(2)2022 02 03.
Artículo en Inglés | MEDLINE | ID: mdl-35044459

RESUMEN

Insecticide resistance and rapid pest evolution threatens food security and the development of sustainable agricultural practices, yet the evolutionary mechanisms that allow pests to rapidly adapt to control tactics remains unclear. Here, we examine how a global super-pest, the Colorado potato beetle (CPB), Leptinotarsa decemlineata, rapidly evolves resistance to insecticides. Using whole-genome resequencing and transcriptomic data focused on its ancestral and pest range in North America, we assess evidence for three, nonmutually exclusive models of rapid evolution: pervasive selection on novel mutations, rapid regulatory evolution, and repeated selection on standing genetic variation. Population genomic analysis demonstrates that CPB is geographically structured, even among recently established pest populations. Pest populations exhibit similar levels of nucleotide diversity, relative to nonpest populations, and show evidence of recent expansion. Genome scans provide clear signatures of repeated adaptation across CPB populations, with especially strong evidence of selection on insecticide resistance genes in different populations. Analyses of gene expression show that constitutive upregulation of candidate insecticide resistance genes drives distinctive population patterns. CPB evolves insecticide resistance repeatedly across agricultural regions, leveraging similar genetic pathways but different genes, demonstrating a polygenic trait architecture for insecticide resistance that can evolve from standing genetic variation. Despite expectations, we do not find support for strong selection on novel mutations, or rapid evolution from selection on regulatory genes. These results suggest that integrated pest management practices must mitigate the evolution of polygenic resistance phenotypes among local pest populations, in order to maintain the efficacy and sustainability of novel control techniques.


Asunto(s)
Escarabajos , Insecticidas , Solanum tuberosum , Animales , Escarabajos/genética , Resistencia a los Insecticidas/genética , Insecticidas/farmacología , Análisis de Secuencia de ADN , Solanum tuberosum/genética
4.
Pest Manag Sci ; 78(9): 3769-3777, 2022 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-34250727

RESUMEN

BACKGROUND: Biological control by generalist predators can be mediated by the abundance and biodiversity of alternative prey. When alternative prey draw predator attacks away from the control target, they can weaken pest suppression. In other cases, a diverse prey base can promote predator abundance and biodiversity, reduce predator-predator interference, and benefit biocontrol. Here, we used molecular gut-content analysis to assess how community composition altered predation of Colorado potato beetle (Leptinotarsa decemlineata (Say)) by Nabis sp. and Geocoris sp. Predators were collected from organic or conventional potato (Solanum tuberosum L.) fields, encouraging differences in arthropod community composition. RESULTS: In organic fields, Nabis predation of potato beetles decreased with increasing arthropod richness and predator abundance. This is consistent with Nabis predators switching to other prey species when available and with growing predator-predator interference. In conventional fields these patterns were reversed, however, with potato beetle predation by Nabis increasing with greater arthropod richness and predator abundance. For Geocoris, Colorado potato beetle predation was more frequent in organic than in conventional fields. However, Geocoris predation of beetles was less frequent in fields with higher abundance of the detritus-feeding fly Scaptomyza pallida Zetterstedt, or of all arthropods, consistent with predators choosing other prey when available. CONCLUSION: Alternative prey generally dampened predation of potato beetles, suggesting these pests were less-preferred prey. Nabis and Geocoris differed in which alternative prey were most disruptive to feeding on potato beetles, and in the effects of farm management on predation, consistent with the two predator species occupying complementary feeding niches. © 2021 Society of Chemical Industry.


Asunto(s)
Artrópodos , Escarabajos , Heterópteros , Solanum tuberosum , Agricultura , Animales , Granjas , Cadena Alimentaria , Conducta Predatoria
5.
J Econ Entomol ; 111(4): 1875-1884, 2018 08 03.
Artículo en Inglés | MEDLINE | ID: mdl-29688507

RESUMEN

Colorado potato beetle, Leptinotarsa decemlineata Say (Coleoptera: Chrysomelidae), is a serious global pest of potato, Solanum tuberosum L. Management of L. decemlineata has relied heavily on insecticides, but repeated evolution of insecticide resistance has motivated the exploration and development of alternative strategies, such as plant resistance. The recent development of two diploid potato families derived from crosses between cultivated and wild potato species (S. chacoense and S. berthaultii) has provided a unique opportunity to reexamine plant traits for resistance breeding. In this 2-yr study, we surveyed select F2 clones for the induction of L. decemlineata mortality and a reduction in defoliation in no-choice feeding assays when challenged with adults and larvae from three sites in Wisconsin. We tested for an association with glandular trichome density and foliar levels of the glycoalkaloids chaconine and solanine. Several potato clones demonstrated resistance in specific feeding assays, but none excelled consistently across experiments. Mortality and defoliation generally differed significantly among L. decemlineata populations, which could be indicative of heritable variation in beetle responses to plant defenses or variation in the physiological status of the beetle populations tested. Contrary to expectations, higher trichome density increased mortality or decreased defoliation in only a few cases, and levels of mortality and defoliation were unrelated to foliar glycoalkaloid content, warranting further investigation of the defense mechanisms of resistant clones. In addition to identifying several potential L. decemlineata resistance sources, this study underscores the need to include multiple insect populations in surveys of plant resistance to this diverse pest.


Asunto(s)
Escarabajos , Solanum tuberosum , Animales , Colorado , Diploidia , Wisconsin
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA