Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Nat Commun ; 13(1): 5005, 2022 08 25.
Artículo en Inglés | MEDLINE | ID: mdl-36008385

RESUMEN

Tropical forests take up more carbon (C) from the atmosphere per annum by photosynthesis than any other type of vegetation. Phosphorus (P) limitations to C uptake are paramount for tropical and subtropical forests around the globe. Yet the generality of photosynthesis-P relationships underlying these limitations are in question, and hence are not represented well in terrestrial biosphere models. Here we demonstrate the dependence of photosynthesis and underlying processes on both leaf N and P concentrations. The regulation of photosynthetic capacity by P was similar across four continents. Implementing P constraints in the ORCHIDEE-CNP model, gross photosynthesis was reduced by 36% across the tropics and subtropics relative to traditional N constraints and unlimiting leaf P. Our results provide a quantitative relationship for the P dependence for photosynthesis for the front-end of global terrestrial C models that is consistent with canopy leaf measurements.


Asunto(s)
Bosques , Fósforo , Carbono , Fotosíntesis , Hojas de la Planta/fisiología , Árboles/fisiología
2.
Glob Chang Biol ; 26(10): 5856-5873, 2020 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-32654340

RESUMEN

Phosphorus (P) is an essential macro-nutrient required for plant metabolism and growth. Low P availability could potentially limit plant responses to elevated carbon dioxide (eCO2 ), but consensus has yet to be reached on the extent of this limitation. Here, based on data from experiments that manipulated both CO2 and P for young individuals of woody and non-woody species, we present a meta-analysis of P limitation impacts on plant growth, physiological, and morphological response to eCO2 . We show that low P availability attenuated plant photosynthetic response to eCO2 by approximately one-quarter, leading to a reduced, but still positive photosynthetic response to eCO2 compared to those under high P availability. Furthermore, low P limited plant aboveground, belowground, and total biomass responses to eCO2 , by 14.7%, 14.3%, and 12.4%, respectively, equivalent to an approximate halving of the eCO2 responses observed under high P availability. In comparison, low P availability did not significantly alter the eCO2 -induced changes in plant tissue nutrient concentration, suggesting tissue nutrient flexibility is an important mechanism allowing biomass response to eCO2 under low P availability. Low P significantly reduced the eCO2 -induced increase in leaf area by 14.3%, mirroring the aboveground biomass response, but low P did not affect the eCO2 -induced increase in root length. Woody plants exhibited stronger attenuation effect of low P on aboveground biomass response to eCO2 than non-woody plants, while plants with different mycorrhizal associations showed similar responses to low P and eCO2 interaction. This meta-analysis highlights crucial data gaps in capturing plant responses to eCO2 and low P availability. Field-based experiments with longer-term exposure of both CO2 and P manipulations are critically needed to provide ecosystem-scale understanding. Taken together, our results provide a quantitative baseline to constrain model-based hypotheses of plant responses to eCO2 under P limitation, thereby improving projections of future global change impacts.


Asunto(s)
Dióxido de Carbono , Ecosistema , Humanos , Fósforo , Fotosíntesis , Plantas
3.
Plant Cell Environ ; 42(7): 2151-2164, 2019 07.
Artículo en Inglés | MEDLINE | ID: mdl-30903994

RESUMEN

To quantify stem respiration (RS ) under elevated CO2 (eCO2 ), stem CO2 efflux (EA ) and CO2 flux through the xylem (FT ) should be accounted for, because part of respired CO2 is transported upwards with the sap solution. However, previous studies have used EA as a proxy of RS , which could lead to equivocal conclusions. Here, to test the effect of eCO2 on RS , both EA and FT were measured in a free-air CO2 enrichment experiment located in a mature Eucalyptus native forest. Drought stress substantially reduced EA and RS , which were unaffected by eCO2 , likely as a consequence of its neutral effect on stem growth in this phosphorus-limited site. However, xylem CO2 concentration measured near the stem base was higher under eCO2 , and decreased along the stem resulting in a negative contribution of FT to RS , whereas the contribution of FT to RS under ambient CO2 was positive. Negative FT indicates net efflux of CO2 respired below the monitored stem segment, likely coming from the roots. Our results highlight the role of nutrient availability on the dependency of RS on eCO2 and suggest stimulated root respiration under eCO2 that may shift vertical gradients in xylem [CO2 ] confounding the interpretation of EA measurements.


Asunto(s)
Transporte Biológico/fisiología , Dióxido de Carbono/metabolismo , Respiración de la Célula/fisiología , Eucalyptus/metabolismo , Tallos de la Planta/metabolismo , Xilema/química , Dióxido de Carbono/farmacología , Respiración de la Célula/efectos de los fármacos , Sequías , Bosques , Modelos Biológicos , Fósforo , Raíces de Plantas/metabolismo , Tallos de la Planta/efectos de los fármacos , Suelo
4.
New Phytol ; 215(3): 992-1008, 2017 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-28505389

RESUMEN

Nitrogen (N) and phosphorus (P) have key roles in leaf metabolism, resulting in a strong coupling of chemical composition traits to metabolic rates in field-based studies. However, in such studies, it is difficult to disentangle the effects of nutrient supply per se on trait-trait relationships. Our study assessed how high and low N (5 mM and 0.4 mM, respectively) and P (1 mM and 2 µM, respectively) supply in 37 species from six plant functional types (PTFs) affected photosynthesis (A) and respiration (R) (in darkness and light) in a controlled environment. Low P supply increased scaling exponents (slopes) of area-based log-log A-N or R-N relationships when N supply was not limiting, whereas there was no P effect under low N supply. By contrast, scaling exponents of A-P and R-P relationships were altered by P and N supply. Neither R : A nor light inhibition of leaf R was affected by nutrient supply. Light inhibition was 26% across nutrient treatments; herbaceous species exhibited a lower degree of light inhibition than woody species. Because N and P supply modulates leaf trait-trait relationships, the next generation of terrestrial biosphere models may need to consider how limitations in N and P availability affect trait-trait relationships when predicting carbon exchange.


Asunto(s)
Ambiente Controlado , Nitrógeno/farmacología , Fósforo/farmacología , Hojas de la Planta/fisiología , Análisis de Varianza , Dióxido de Carbono/metabolismo , Luz , Nitrógeno/metabolismo , Fósforo/metabolismo , Fotosíntesis/efectos de la radiación , Hojas de la Planta/efectos de los fármacos , Hojas de la Planta/metabolismo , Hojas de la Planta/efectos de la radiación , Carácter Cuantitativo Heredable , Almidón/metabolismo , Azúcares/metabolismo
5.
Plant Cell Environ ; 38(6): 1142-56, 2015 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-25311401

RESUMEN

Leaf photosynthetic CO2 responses can provide insight into how major nutrients, such as phosphorus (P), constrain leaf CO2 assimilation rates (Anet). However, triose-phosphate limitations are rarely employed in the classic photosynthesis model and it is uncertain as to what extent these limitations occur in field situations. In contrast to predictions from biochemical theory of photosynthesis, we found consistent evidence in the field of lower Anet in high [CO2] and low [O2 ] than at ambient [O2 ]. For 10 species of trees and shrubs across a range of soil P availability in Australia, none of them showed a positive response of Anet at saturating [CO2] (i.e. Amax) to 2 kPa O2. Three species showed >20% reductions in Amax in low [O2], a phenomenon potentially explained by orthophosphate (Pi) savings during photorespiration. These species, with largest photosynthetic capacity and Pi > 2 mmol P m(-2), rely the most on additional Pi made available from photorespiration rather than species growing in P-impoverished soils. The results suggest that rarely used adjustments to a biochemical photosynthesis model are useful for predicting Amax and give insight into the biochemical limitations of photosynthesis rates at a range of leaf P concentrations. Phosphate limitations to photosynthetic capacity are likely more common in the field than previously considered.


Asunto(s)
Fósforo/metabolismo , Fotosíntesis/fisiología , Árboles/fisiología , Dióxido de Carbono/metabolismo , Modelos Biológicos , Oxígeno/metabolismo , Fosfatos/metabolismo , Fosfatos/fisiología , Fósforo/fisiología , Hojas de la Planta/metabolismo , Hojas de la Planta/fisiología , Árboles/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA