Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Vet Sci ; 11(4)2024 Mar 23.
Artículo en Inglés | MEDLINE | ID: mdl-38668414

RESUMEN

To investigate the effects of nutrient restriction and one-carbon metabolite (OCM) supplementation (folate, vitamin B12, methionine, and choline) on fetal small intestine weight, vascularity, and cell proliferation, 29 (n = 7 ± 1 per treatment) crossbred Angus beef heifers (436 ± 42 kg) were estrous synchronized and conceived by artificial insemination with female sexed semen from a single sire. Then, they were allotted randomly to one of four treatments in a 2 × 2 factorial arrangement with the main factors of nutritional plane [control (CON) vs. restricted feed intake (RES)] and OCM supplementation [without OCM (-OCM) or with OCM (+OCM)]. Heifers receiving the CON level of intake were fed to target an average daily gain of 0.45 kg/day, which would allow them to reach 80% of mature BW by calving. Heifers receiving the RES level of intake were fed to lose 0.23 kg/heifer daily, which mimics observed production responses in heifers that experience a diet and environment change during early gestation. Targeted heifer gain and OCM treatments were administered from d 0 to 63 of gestation, and then all heifers were fed a common diet targeting 0.45 kg/d gain until d 161 of gestation, when heifers were slaughtered, and fetal jejunum was collected. Gain had no effect (p = 0.17) on the fetal small intestinal weight. However, OCM treatments (p = 0.02) displayed less weight compared to the -OCM groups. Capillary area density was increased in fetal jejunal villi of RES - OCM (p = 0.02). Vascular endothelial growth factor receptor 2 (VEGFR2) positivity ratio tended to be greater (p = 0.08) in villi and was less in the crypts (p = 0.02) of the RES + OCM group. Cell proliferation decreased (p = 0.02) in villi and crypts of fetal jejunal tissue from heifers fed the RES + OCM treatment compared with all groups and CON - OCM, respectively. Spatial cell density increased in RES - OCM compared with CON + OCM (p = 0.05). Combined, these data show OCM supplementation can increase expression of VEGFR2 in jejunal villi, which will promote maintenance of the microvascular beds, while at the same time decreasing small intestine weight and crypt cell proliferation.

2.
J Anim Sci ; 1022024 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-38407272

RESUMEN

We hypothesized that restricted maternal nutrition and supplementation of one-carbon metabolites (OCM; methionine, folate, choline, and vitamin B12) would affect placental vascular development during early pregnancy. A total of 43 cows were bred, and 32 heifers successfully became pregnant with female calves, leading to the formation of four treatment groups: CON - OCM (n = 8), CON + OCM (n = 7), RES - OCM (n = 9), and RES + OCM (n = 8). The experimental design was a 2 × 2 factorial, with main factors of dietary intake affecting average daily gain: control (CON; 0.6 kg/d ADG) and restricted (RES; -0.23 kg/d ADG); and OCM supplementation (+OCM) in which the heifers were supplemented with rumen-protected methionine (7.4 g/d) and choline (44.4 g/d) and received weekly injections of 320 mg of folate and 20 mg of vitamin B12, or received no supplementation (-OCM; corn carrier and saline injections). Heifers were individually fed and randomly assigned to treatment at breeding (day 0). Placentomes were collected on day 63 of gestation (0.225 of gestation). Fluorescent staining with CD31 and CD34 combined with image analysis was used to determine the vascularity of the placenta. Images were analyzed for capillary area density (CAD) and capillary number density (CND). Areas evaluated included fetal placental cotyledon (COT), maternal placental caruncle (CAR), whole placentome (CAR + COT), intercotyledonary fetal membranes (ICOT, or chorioallantois), intercaruncular endometrium (ICAR), and endometrial glands (EG). Data were analyzed with the GLM procedure of SAS, with heifer as the experimental unit and significance at P ≤ 0.05 and a tendency at P > 0.05 and P < 0.10. Though no gain × OCM interactions existed (P ≥ 0.10), OCM supplementation increased (P = 0.01) CAD of EG, whereas nutrient restriction tended (P < 0.10) to increase CAD of ICOT and CND of COT. Additionally, there was a gain × OCM interaction (P < 0.05) for CAD within the placentome and ICAR, such that RES reduced and supplementation of RES with OCM restored CAD. These results indicate that maternal rate of gain and OCM supplementation affected placental vascularization (capillary area and number density), which could affect placental function and thus the efficiency of nutrient transfer to the fetus during early gestation.


In cow­calf production, periods of poor forage availability or quality can result in nutrient restriction during pregnancy. Previous studies have shown that even moderate maternal feed restriction during pregnancy, including very early in pregnancy, has profound effects on fetal and placental development, potentially having lasting impacts on calf growth and body composition later in life. One-carbon metabolites (OCM) in the diet are biomolecules required for methylation reactions and participate in the regulation of gene expression. Our objective was to evaluate the effects of nutrient restriction and OCM supplementation (specifically methionine, choline, folate, and vitamin B12) on placental vascular development during early pregnancy. Proper placental vascular development is necessary for healthy pregnancy outcomes, reflected by normal birth weight and healthy offspring. Our results indicated that maternal rate of gain and OCM supplementation affect placental vascularization, which could affect placental function and thereby fetal development throughout gestation. In the context of beef cattle production, our study sheds light on strategies that could enhance placental vascular development during early pregnancy. However, it is essential to recognize the nuances in our data, highlighting the need for further research to fully comprehend these intricate processes.


Asunto(s)
Complejo Hierro-Dextran , Placenta , Femenino , Embarazo , Animales , Bovinos , Fitomejoramiento , Metionina/farmacología , Racemetionina , Carbono , Colina/farmacología , Suplementos Dietéticos , Ácido Fólico/farmacología , Vitamina B 12/farmacología , Dieta/veterinaria
3.
Metabolites ; 13(2)2023 Jan 25.
Artículo en Inglés | MEDLINE | ID: mdl-36837794

RESUMEN

Herein, we evaluated the hepatic lipid metabolic profiles of bovine fetuses in response to maternal vitamin and mineral supplementation (VMSUP; supplemented (VTM) or not (NoVTM)) and two different rates of gain (GAIN; low gain (LG), 0.28 kg/d, or moderate gain (MG), 0.79 kg/d). Crossbred Angus heifers (n = 35; initial BW = 359.5 ± 7.1 kg) were randomly assigned to a 2 × 2 factorial arrangement, resulting in the following treatment combinations: NoVTM-LG (n = 9), NoVTM-MG (n = 9), VTM-LG (n = 9), and VTM-MG (n = 8). Heifers received their treatments until d 83 of gestation, when they were ovariohysterectomized. Fetuses were harvested and liver samples were analyzed via ultrahigh-performance liquid chromatography-tandem mass spectroscopy to characterize lipid profiles and abundances. We identified 374 biochemicals/metabolites belonging to 57 sub-pathways of the lipid metabolism super-pathway. The majority of the biochemicals/metabolites (n = 152) were significantly affected by the main effect of GAIN. Maternal moderate rates of gain resulted in greater abundances (p ≤ 0.0001) of ω-3 fatty acids (eicosapentaenoate, docosapentaenoate, and docosahexaenoate) and lower abundances (p ≤ 0.0001) of ω-6 fatty acids. Further, MG resulted in the accumulation of several diacylglycerols and depletion of the majority of the monoacylglycerols. Concentrations of nearly all acylcarnitines (p ≤ 0.03) were decreased in VTM-LG fetal livers compared to all other treatment combinations, indicating a greater rate of complete oxidation of fatty acids. Levels of secondary bile acids were impacted by VMSUP, being greater (p ≤ 0.0048) in NoVTM than in VTM fetal livers. Moreover, NoVTM combined with lower rate of gain resulted in greater concentrations of most secondary bile acid biochemicals/metabolites. These data indicate that maternal diet influenced and altered fetal hepatic lipid composition in the first trimester of gestation. Maternal body weight gain exerted a greater influence on fetal lipid profiles than vitamin and mineral supplementation. Specifically, lower rate of gain (0.28 kg/d) resulted in an increased abundance of the majority of the biochemicals/metabolites identified in this study.

4.
J Anim Sci ; 1012023 Jan 03.
Artículo en Inglés | MEDLINE | ID: mdl-36566452

RESUMEN

The objective of this study was to determine the dose of folate and vitamin B12 in beef heifers fed rumen protected methionine and choline required to maintain increased B12 levels and intermediates of the methionine-folate cycle in circulation. Angus heifers (n = 30; BW = 392.6 ±â€…12.6 kg) were individually fed and assigned to one of five treatments: 0XNEG: Total mixed ration (TMR) and saline injections at day 0 and 7 of the estrous cycle, 0XPOS: TMR, rumen protected methionine (MET) fed at 0.08% of the diet DM, rumen protected choline (CHOL) fed at 60 g/d, and saline injections at day 0 and 7, 0.5X: TMR, MET, CHOL, 5 mg B12, and 80 mg folate at day 0 and 7, 1X: TMR, MET CHOL, 10 mg vitamin B12, and 160 mg folate at day 0 and 7, and 2X: TMR, MET, CHOL, 20 mg B12, and 320 mg folate at day 0 and 7. All heifers were estrus synchronized but not bred, and blood was collected on day 0, 2, 5, 7, 9, 12, and 14 of a synchronized estrous cycle. Heifers were slaughtered on day 14 of the estrous cycle for liver collection. Serum B12 concentrations were greater in the 0.5X, 1X, and 2X, compared with 0XNEG and 0XPOS on all days after treatment initiation (P < 0.0001). Serum folate concentrations were greater for the 2X treatment at day 5, 7, and 9 of the cycle compared with all other treatments (P ≤ 0.05). There were no differences (P ≥ 0.19) in hepatic methionine-cycle or choline analyte concentrations by treatment. Concentrations of hepatic folate cycle intermediates were always greater (P ≤ 0.04) in the 2X treatment compared with the 0XNEG and 0XPOS heifers. Serum methionine was greater (P = 0.04) in the 0.5X and 2X heifers compared with 0XNEG, and S-adenosylhomocysteine (SAH) tended (P = 0.06) to be greater in the 0.5X heifers and the S-adenosylmethionine (SAM):SAH ratio was decreased (P = 0.05) in the 0.5X treatment compared with the 0XNEG, 0XPOS, and 2X heifers. The hepatic transcript abundance of MAT2A and MAT2B were decreased (P ≤ 0.02) in the 0.5X heifers compared with the 0XNEG, 0XPOS, and 2X heifers. These data support that beef heifers fed rumen protected methionine and choline require 20 mg B12 and 320 mg folate once weekly to maintain increased concentrations of B12 and folate in serum. Furthermore, these data demonstrate that not all supplementation levels are equal in providing positive responses, and that some levels, such as the 0.5X, may result in a stoichiometric imbalance in the one-carbon metabolism pathway that results in a decreased SAM:SAH ratio.


The strategic inclusion of one-carbon metabolites, which include vitamins and minerals that are found in human prenatal vitamins, to beef cattle feeding and management protocols during the periconceptual period (the time around breeding) is a novel concept. Therefore, this study aimed to identify the feeding and injection doses of one-carbon metabolites in beef heifers to maintain increased circulating concentrations of one-carbon metabolites for use as a model from which other studies could base their treatments on. We determined that daily feeding of methionine and choline at 0.08% of dry matter and 60 g/d, respectively, and administration of vitamin B12 and folate at 20 mg and 320 mg once per week, respectively resulted in sustained elevated concentrations of one-carbon metabolites.


Asunto(s)
Ácido Fólico , Metionina , Bovinos , Femenino , Animales , Ácido Fólico/metabolismo , Carbono/metabolismo , Racemetionina/metabolismo , Hígado/metabolismo , Ciclo Estral , Colina/metabolismo , S-Adenosilmetionina/metabolismo , Suplementos Dietéticos , Rumen/metabolismo
5.
Metabolites ; 12(8)2022 Jul 27.
Artículo en Inglés | MEDLINE | ID: mdl-36005568

RESUMEN

The objective of this study was to evaluate the effects of feeding heifers a vitamin and mineral supplement and targeting divergent rates of weight gain during early gestation on the fetal liver amino acid, carbohydrate, and energy profile at d 83 of gestation. Seventy-two crossbred Angus heifers were randomly assigned in a 2 × 2 factorial arrangement to one of four treatments comprising the main effects of vitamin and mineral supplementation (VTM or NOVTM) and feeding to achieve different rates of weight gain (low gain [LG] 0.28 kg/day vs. moderate gain [MG] 0.79 kg/day). Thirty-five gestating heifers with female fetuses were ovariohysterectomized on d 83 of gestation and fetal liver was collected and analyzed by reverse phase UPLC-tandem mass spectrometry with positive and negative ion mode electrospray ionization, as well as by hydrophilic interaction liquid chromatography UPLC-MS/MS with negative ion mode ESI for compounds of known identity. The Glycine, Serine, and Threonine metabolism pathway and the Leucine, Isoleucine, and Valine metabolism pathway had a greater total metabolite abundance in the liver of the NOVTM-LG group and least in the VTM-LG group (p < 0.01). Finally, both the TCA Cycle and Oxidative Phosphorylation pathways within the Energy Metabolism superpathway were differentially affected by the main effect of VTM, where the TCA cycle metabolites were greater (p = 0.04) in the NOVTM fetal livers and the Oxidative Phosphorylation biochemicals were greater (p = 0.02) in the fetal livers of the VTM supplemented heifers. These data demonstrate that the majority of metabolites that are affected by rate of weight gain or vitamin/mineral supplementation are decreased in heifers on a greater rate of weight gain or vitamin/mineral supplementation.

6.
Data Brief ; 42: 108074, 2022 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-35392625

RESUMEN

Fetal programming is established early in life, likely through epigenetic mechanisms that control gene expression. Micronutrients can act as epigenetic modifiers (EM) by modulating the genome through mechanisms that include DNA methylation and post-translational modification of chromatin. Among the EM, methionine, choline, folate, and vitamin B12 have been suggested as key players of DNA methylation. However, the effects of supplementing these four EM, involved in the methionine folate cycle on DNA methylation, are still under investigation. This manuscript provides the genome-wide DNA methylation dataset (GSE180362) of bovine embryonic fibroblast cells exposed to different supplementation levels of glucose and methionine, choline, folate, and vitamin B12 (collectively named as Epigenetic Modifiers - EM). The DNA methylation was measured using MSP-I digestion and Reduced Representation Bisulfite Sequencing. Bioinformatics analyses included data quality control, read mapping, methylation calling, and differential methylation analyses. Supplementary file S1 and data analysis codes are within this article. To our knowledge, this is the first dataset investigating the effects of four EM in bovine embryonic fibroblast DNA methylation profiles. Furthermore, this data and its findings provide information on putative candidate genes responsive to DNA methylation due to EM supplementation.

7.
Front Genet ; 13: 812764, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35281844

RESUMEN

Epigenetic modifiers (EM; methionine, choline, folate, and vitamin B12) are important for early embryonic development due to their roles as methyl donors or cofactors in methylation reactions. Additionally, they are essential for the synthesis of nucleotides, polyamines, redox equivalents, and energy metabolites. Despite their importance, investigation into the supplementation of EM in ruminants has been limited to one or two epigenetic modifiers. Like all biochemical pathways, one-carbon metabolism needs to be stoichiometrically balanced. Thus, we investigated the effects of supplementing four EM encompassing the methionine-folate cycle on bovine embryonic fibroblast growth, mitochondrial function, and DNA methylation. We hypothesized that EM supplemented to embryonic fibroblasts cultured in divergent glucose media would increase mitochondrial respiration and cell growth rate and alter DNA methylation as reflected by changes in the gene expression of enzymes involved in methylation reactions, thereby improving the growth parameters beyond Control treated cells. Bovine embryonic fibroblast cells were cultured in Eagle's minimum essential medium with 1 g/L glucose (Low) or 4.5 g/L glucose (High). The control medium contained no additional OCM, whereas the treated media contained supplemented EM at 2.5, 5, and 10 times (×2.5, ×5, and ×10, respectively) the control media, except for methionine (limited to ×2). Therefore, the experimental design was a 2 (levels of glucose) × 4 (levels of EM) factorial arrangement of treatments. Cells were passaged three times in their respective treatment media before analysis for growth rate, cell proliferation, mitochondrial respiration, transcript abundance of methionine-folate cycle enzymes, and DNA methylation by reduced-representation bisulfite sequencing. Total cell growth was greatest in High ×10 and mitochondrial maximal respiration, and reserve capacity was greatest (p < 0.01) for High ×2.5 and ×10 compared with all other treatments. In Low cells, the total growth rate, mitochondrial maximal respiration, and reserve capacity increased quadratically to 2.5 and ×5 and decreased to control levels at ×10. The biological processes identified due to differential methylation included the positive regulation of GTPase activity, molecular function, protein modification processes, phosphorylation, and metabolic processes. These data are interpreted to imply that EM increased the growth rate and mitochondrial function beyond Control treated cells in both Low and High cells, which may be due to changes in the methylation of genes involved with growth and energy metabolism.

8.
Anim Reprod Sci ; 226: 106703, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-33549887

RESUMEN

Yearling Angus bulls (n = 36) were assigned one of three diets: 1) 60 % concentrate as corn (CON, 0.2 % S, 13.4 % CP; n = 12); 2) 60 % dried corn distiller's grains plus solubles (60DDGS 0.5 % S, 22.0 % CP; n = 12); 3) CON diet + equivalent sulfur of 60DDGS as CaSO4 (SULF, 0.5 % S, 13.9 % CP; n = 12) to evaluate effects of feeding 60 % DDGS or sulfur as CaSO4 on mineral and metabolite concentrations in serum and seminal plasma. Treatment × day interactions (P < 0.03) were observed for serum Cu, Se, and Mo. For Cu at d 112, lesser (P < 0.01) concentrations were observed in bulls fed the 60DDGS compared to SULF and CON diets. There were greater (P < 0.01) concentrations of Se at d 112 in bulls fed 60DDGS than CON and SULF diets. Concentrations of Mo were greater at d 56 and 112 (P < 0.01) in bulls fed CON compared to SULF and 60DDGS diets. In seminal plasma, there were treatment × day interactions (P < 0.02) for Cu and Mo. For Cu, at d 112, there was a lesser (P < 0.01) concentration in the bulls fed SULF compared to CON and 60DDGS diets. For Mo, there was a greater (P < 0.01) concentration in bulls fed the CON than 60DDGS and SULF diets at d 56 and 112. Changes in mineral and metabolite concentrations may have effects on bull reproductive performance when there is a relatively greater dietary sulfur content.


Asunto(s)
Alimentación Animal/análisis , Sulfato de Calcio/administración & dosificación , Bovinos , Dieta/veterinaria , Minerales/sangre , Semen/química , Aminoácidos/química , Aminoácidos/metabolismo , Fenómenos Fisiológicos Nutricionales de los Animales , Animales , Sulfato de Calcio/farmacología , Suplementos Dietéticos , Glucosa/química , Glucosa/metabolismo , Masculino , Minerales/metabolismo , Urea/metabolismo , Zea mays
9.
J Anim Sci ; 96(3): 950-963, 2018 Apr 03.
Artículo en Inglés | MEDLINE | ID: mdl-29401298

RESUMEN

We hypothesize that syncytin-Rum1, bovine endogenous retrovirus-K1 (BERV-K1), pregnancy-specific protein-B (PSP-B), and interferon-τ (IFN-τ) will be influenced by maternal nutrient restriction and be differentially expressed during key stages (day 16, 34, and 50) of the establishment of gestation when fed to meet industry standards. Commercial crossbred heifers (n = 49) were maintained on a total mixed ration and supplemented with dried distillers grains with solubles. All heifers were subjected to 5-d CO-Synch + CIDR estrus synchronization protocol. Non-pregnant, non-bred control (NP-NB) heifers (n = 6) were ovariohysterectomized on day 16, and the remaining heifers were AI to a single Angus sire (day of breeding = day 0). On the day of breeding, heifers were randomly assigned to dietary treatments. One half were assigned to control treatment (CON) targeted to gain 0.45 kg/d, and the remaining half were assigned to restricted treatment (RES), which received 60% of control diets. Heifers were subjected to ovariohysterectomy on day 16, 34, or 50 of gestation. Utero-placental tissues were obtained from the uterine horn ipsilateral (P) and contralateral (NP) to the corpus luteum and separated into maternal caruncle (CAR), maternal endometrium, inter-caruncle, (ICAR), and fetal membrane (FM). There were no interactions between stage of gestation and nutritional treatment for syncytin-Rum1 or PSP-B (P > 0.22). Expression of BERV-K1 was influenced by a treatment × stage of gestation interaction (P = 0.03) in NP-CAR. On day 50, heifers fed the CON diet had greater BERV-K1 expression compared with CON heifers on day 16 and 34 and RES heifers at all sampling time points. There was a treatment × stage of gestation interaction (P < 0.01) for IFN-τ in FM tissue. On 16 d, mRNA expression of IFN-τ was greater (P < 0.01) compared with day 34 and 50 for both CON and RES heifers, but RES FM had greater (P < 0.01) IFN-τ expression compared with CON FM. In P-CAR, PSP-B expression increased (P < 0.01) by 18 000-fold on day 50 compared with NP-NB heifers. In P-ICAR, expression of syncytin-Rum1 in P-ICAR was greater (P = 0.01) on day 16 with a 14.14-fold increase compared with relative expression on day 34 and 50; whereas, PSP-B was increased (P < 0.01) on day 34 and 50 compared with day 16. In conclusion, 40% nutrient restriction had limited influence on mRNA of ERVs, PSP-B, and IFN-τ but stage of gestation differences reinforced the importance of these genes during the establishment of pregnancy.


Asunto(s)
Bovinos/fisiología , Suplementos Dietéticos , Retrovirus Endógenos/genética , Privación de Alimentos/fisiología , Productos del Gen env/genética , Interferón Tipo I/genética , Proteínas Gestacionales/genética , Animales , Cruzamiento , Bovinos/genética , Dieta/veterinaria , Endometrio/fisiología , Femenino , Histerectomía , Fenómenos Fisiologicos Nutricionales Maternos , Embarazo , ARN Mensajero/genética , Distribución Aleatoria , Útero/fisiología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA