Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Glob Chang Biol ; 28(13): 4124-4142, 2022 07.
Artículo en Inglés | MEDLINE | ID: mdl-35527235

RESUMEN

The assessment of population vulnerability under climate change is crucial for planning conservation as well as for ensuring food security. Coffea canephora is, in its native habitat, an understorey tree that is mainly distributed in the lowland rainforests of tropical Africa. Also known as Robusta, its commercial value constitutes a significant revenue for many human populations in tropical countries. Comparing ecological and genomic vulnerabilities within the species' native range can provide valuable insights about habitat loss and the species' adaptive potential, allowing to identify genotypes that may act as a resource for varietal improvement. By applying species distribution models, we assessed ecological vulnerability as the decrease in climatic suitability under future climatic conditions from 492 occurrences. We then quantified genomic vulnerability (or risk of maladaptation) as the allelic composition change required to keep pace with predicted climate change. Genomic vulnerability was estimated from genomic environmental correlations throughout the native range. Suitable habitat was predicted to diminish to half its size by 2050, with populations near coastlines and around the Congo River being the most vulnerable. Whole-genome sequencing revealed 165 candidate SNPs associated with climatic adaptation in C. canephora, which were located in genes involved in plant response to biotic and abiotic stressors. Genomic vulnerability was higher for populations in West Africa and in the region at the border between DRC and Uganda. Despite an overall low correlation between genomic and ecological vulnerability at broad scale, these two components of vulnerability overlap spatially in ways that may become damaging. Genomic vulnerability was estimated to be 23% higher in populations where habitat will be lost in 2050 compared to regions where habitat will remain suitable. These results highlight how ecological and genomic vulnerabilities are relevant when planning on how to cope with climate change regarding an economically important species.


Asunto(s)
Coffea , Cambio Climático , Coffea/genética , Café , Genoma de Planta , Genómica , Humanos
2.
Ann Bot ; 126(5): 849-863, 2020 10 06.
Artículo en Inglés | MEDLINE | ID: mdl-32303759

RESUMEN

BACKGROUND AND AIMS: Like other clades, the Coffea genus is highly diversified on the island of Madagascar. The 66 endemic species have colonized various environments and consequently exhibit a wide diversity of morphological, functional and phenological features and reproductive strategies. The trends of interspecific trait variation, which stems from interactions between genetically defined species and their environment, still needed to be addressed for Malagasy coffee trees. METHODS: Data acquisition was done in the most comprehensive ex situ collection of Madagascan wild Coffea. The structure of endemic wild coffees maintained in an ex situ collection was explored in terms of morphological, phenological and functional traits. The environmental (natural habitat) effect was assessed on traits in species from distinct natural habitats. Phylogenetic signal (Pagel's λ, Blomberg's K) was used to quantify trait proximities among species according to their phylogenetic relatedness. KEY RESULTS: Despite the lack of environmental difference in the ex situ collection, widely diverging phenotypes were observed. Phylogenetic signal was found to vary greatly across and even within trait categories. The highest values were exhibited by the ratio of internode mass to leaf mass, the length of the maturation phase and leaf dry matter content (ratio of dry leaf mass to fresh leaf mass). By contrast, traits weakly linked to phylogeny were either constrained by the original natural environment (leaf size) or under selective pressures (phenological traits). CONCLUSIONS: This study gives insight into complex patterns of trait variability found in an ex situ collection, and underlines the opportunities offered by living ex situ collections for research characterizing phenotypic variation.


Asunto(s)
Café , Hojas de la Planta , Islas , Madagascar , Fenotipo , Filogenia
3.
PLoS One ; 14(6): e0216347, 2019.
Artículo en Inglés | MEDLINE | ID: mdl-31188829

RESUMEN

Chloroplast sequences are widely used for phylogenetic analysis due to their high degree of conservation in plants. Whole chloroplast genomes can now be readily obtained for plant species using new sequencing methods, giving invaluable data for plant evolution However new annotation methods are required for the efficient analysis of this data to deliver high quality phylogenetic analyses. In this study, the two main tools for chloroplast genome annotation were compared. More consistent detection and annotation of genes were produced with GeSeq when compared to the currently used Dogma. This suggests that the annotation of most of the previously annotated chloroplast genomes should now be updated. GeSeq was applied to species related to coffee, including 16 species of the Coffea and Psilanthus genera to reconstruct the ancestral chloroplast genomes and to evaluate their phylogenetic relationships. Eight genes in the plant chloroplast pan genome (consisting of 92 genes) were always absent in the coffee species analyzed. Notably, the two main cultivated coffee species (i.e. Arabica and Robusta) did not group into the same clade and differ in their pattern of gene evolution. While Arabica coffee (Coffea arabica) belongs to the Coffea genus, Robusta coffee (Coffea canephora) is associated with the Psilanthus genus. A more extensive survey of related species is required to determine if this is a unique attribute of Robusta coffee or a more widespread feature of coffee tree species.


Asunto(s)
Café/genética , Genoma del Cloroplasto/genética , Anotación de Secuencia Molecular/métodos , Filogenia , Evolución Molecular , Genes de Plantas , Anotación de Secuencia Molecular/normas , Análisis de Secuencia de ADN
4.
Mol Genet Genomics ; 291(1): 155-68, 2016 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-26231981

RESUMEN

The completion of the genome assembly for the economically important coffee plant Coffea canephora (Rubiaceae) has allowed the use of bioinformatic tools to identify and characterize a diverse array of transposable elements (TEs), which can be used in evolutionary studies of the genus. An overview of the copy number and location within the C. canephora genome of four TEs is presented. These are tested for their use as molecular markers to unravel the evolutionary history of the Millotii Complex, a group of six wild coffee (Coffea) species native to Madagascar. Two TEs from the Gypsy superfamily successfully recovered some species boundaries and geographic structure among samples, whereas a TE from the Copia superfamily did not. Notably, species occurring in evergreen moist forests of eastern and southeastern Madagascar were divergent with respect to species in other habitats and regions. Our results suggest that the peak of transpositional activity of the Gypsy and Copia TEs occurred, respectively, before and after the speciation events of the tested Madagascan species. We conclude that the utilization of active TEs has considerable potential to unravel the evolutionary history and delimitation of closely related Coffea species. However, the selection of TE needs to be experimentally tested, since each element has its own evolutionary history. Different TEs with similar copy number in a given species can render different dendrograms; thus copy number is not a good selection criterion to attain phylogenetic resolution.


Asunto(s)
Coffea/genética , Café/genética , Elementos Transponibles de ADN/genética , Genoma de Planta/genética , ADN de Plantas/genética , Evolución Molecular , Dosificación de Gen/genética , Filogenia
5.
Appl Environ Microbiol ; 82(5): 1556-68, 2015 Dec 28.
Artículo en Inglés | MEDLINE | ID: mdl-26712553

RESUMEN

Xylella fastidiosa is a xylem-limited phytopathogenic bacterium endemic to the Americas that has recently emerged in Asia and Europe. Although this bacterium is classified as a quarantine organism in the European Union, importation of plant material from contaminated areas and latent infection in asymptomatic plants have engendered its inevitable introduction. In 2012, four coffee plants (Coffea arabica and Coffea canephora) with leaf scorch symptoms growing in a confined greenhouse were detected and intercepted in France. After identification of the causal agent, this outbreak was eradicated. Three X. fastidiosa strains were isolated from these plants, confirming a preliminary identification based on immunology. The strains were characterized by multiplex PCR and by multilocus sequence analysis/typing (MLSA-MLST) based on seven housekeeping genes. One strain, CFBP 8073, isolated from C. canephora imported from Mexico, was assigned to X. fastidiosa subsp. fastidiosa/X. fastidiosa subsp. sandyi. This strain harbors a novel sequence type (ST) with novel alleles at two loci. The two other strains, CFBP 8072 and CFBP 8074, isolated from Coffea arabica imported from Ecuador, were allocated to X. fastidiosa subsp. pauca. These two strains shared a novel ST with novel alleles at two loci. These MLST profiles showed evidence of recombination events. We provide genome sequences for CFBP 8072 and CFBP 8073 strains. Comparative genomic analyses of these two genome sequences with publicly available X. fastidiosa genomes, including the Italian strain CoDiRO, confirmed these phylogenetic positions and provided candidate alleles for coffee plant adaptation. This study demonstrates the global diversity of X. fastidiosa and highlights the diversity of strains isolated from coffee plants.


Asunto(s)
Café/microbiología , Variación Genética , Recombinación Homóloga , Enfermedades de las Plantas/microbiología , Xylella/crecimiento & desarrollo , Xylella/genética , Ecuador , Francia , Genoma Bacteriano , México , Tipificación de Secuencias Multilocus , Filogenia , Recombinación Genética , Análisis de Secuencia de ADN , Serotipificación , Xylella/clasificación , Xylella/inmunología
6.
BMC Genomics ; 13: 103, 2012 Mar 20.
Artículo en Inglés | MEDLINE | ID: mdl-22433423

RESUMEN

BACKGROUND: Coffee trees (Rubiaceae) and tomato (Solanaceae) belong to the Asterid clade, while grapevine (Vitaceae) belongs to the Rosid clade. Coffee and tomato separated from grapevine 125 million years ago, while coffee and tomato diverged 83-89 million years ago. These long periods of divergent evolution should have permitted the genomes to reorganize significantly. So far, very few comparative mappings have been performed between very distantly related species belonging to different clades. We report the first multiple comparison between species from Asterid and Rosid clades, to examine both macro-and microsynteny relationships. RESULTS: Thanks to a set of 867 COSII markers, macrosynteny was detected between coffee, tomato and grapevine. While coffee and tomato genomes share 318 orthologous markers and 27 conserved syntenic segments (CSSs), coffee and grapevine also share a similar number of syntenic markers and CSSs: 299 and 29 respectively. Despite large genome macrostructure reorganization, several large chromosome segments showed outstanding macrosynteny shedding new insights into chromosome evolution between Asterids and Rosids. We also analyzed a sequence of 174 kb containing the ovate gene, conserved in a syntenic block between coffee, tomato and grapevine that showed a high-level of microstructure conservation. A higher level of conservation was observed between coffee and grapevine, both woody and long life-cycle plants, than between coffee and tomato. Out of 16 coffee genes of this syntenic segment, 7 and 14 showed complete synteny between coffee and tomato or grapevine, respectively. CONCLUSIONS: These results show that significant conservation is found between distantly related species from the Asterid (Coffea canephora and Solanum sp.) and Rosid (Vitis vinifera) clades, at the genome macrostructure and microstructure levels. At the ovate locus, conservation did not decline in relation to increasing phylogenetic distance, suggesting that the time factor alone does not explain divergences. Our results are considerably useful for syntenic studies between supposedly remote species for the isolation of important genes for agronomy.


Asunto(s)
Magnoliopsida/genética , Filogenia , Sintenía , Mapeo Cromosómico , Cromosomas Artificiales Bacterianos/genética , Clonación Molecular , Coffea/genética , Biología Computacional , Evolución Molecular , Sitios Genéticos/genética , Genoma de Planta/genética , Solanum/genética , Vitis/genética
7.
Genetics ; 174(3): 1407-20, 2006 Nov.
Artículo en Inglés | MEDLINE | ID: mdl-16951058

RESUMEN

We report herein the application of a set of algorithms to identify a large number (2869) of single-copy orthologs (COSII), which are shared by most, if not all, euasterid plant species as well as the model species Arabidopsis. Alignments of the orthologous sequences across multiple species enabled the design of "universal PCR primers," which can be used to amplify the corresponding orthologs from a broad range of taxa, including those lacking any sequence databases. Functional annotation revealed that these conserved, single-copy orthologs encode a higher-than-expected frequency of proteins transported and utilized in organelles and a paucity of proteins associated with cell walls, protein kinases, transcription factors, and signal transduction. The enabling power of this new ortholog resource was demonstrated in phylogenetic studies, as well as in comparative mapping across the plant families tomato (family Solanaceae) and coffee (family Rubiaceae). The combined results of these studies provide compelling evidence that (1) the ancestral species that gave rise to the core euasterid families Solanaceae and Rubiaceae had a basic chromosome number of x=11 or 12.2) No whole-genome duplication event (i.e., polyploidization) occurred immediately prior to or after the radiation of either Solanaceae or Rubiaceae as has been recently suggested.


Asunto(s)
Biología Computacional , Dosificación de Gen , Genes de Plantas , Magnoliopsida/genética , Filogenia , Plantas/genética , Algoritmos , Secuencia de Aminoácidos , Arabidopsis/genética , Secuencia de Bases , Mapeo Cromosómico , Cromosomas de las Plantas , Café/genética , Bases de Datos Genéticas , Etiquetas de Secuencia Expresada , Solanum lycopersicum/genética , Magnoliopsida/clasificación , Datos de Secuencia Molecular , Homología de Secuencia de Aminoácido
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA