Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 316: 116742, 2023 Nov 15.
Artículo en Inglés | MEDLINE | ID: mdl-37290736

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Shexiang Tongxin Dropping Pill (STDP), a traditional Chinese medicine compound, is fragrant, invigorates the qi, unblocks pulses, activates the blood circulation, removes blood stasis, and relieves pain. It is used clinically to treat coronary heart disease and angina pectoris. Coronary microvascular dysfunction (CMD) is associated with increased morbidity and mortality from cardiovascular events. Endothelial dysfunction and inflammation have been verified as its underlying causes. STDP can ameliorate CMD, but the mechanism has not been fully elucidated. AIM OF THE STUDY: To explore the effects of STDP on M1 macrophage polarization-induced inflammation and endothelial dysfunction as an inhibitor of CMD, and to determine its mechanisms of action. MATERIALS AND METHODS: The CMD rat model was established by left anterior descending artery (LAD) ligation. The efficacy of STDP against CMD was evaluated by echocardiography, optical microangiography, Evans blue staining, and histological examination. The OGD/R-induced endothelial injury model, the endothelial injury-induced sterile inflammation model, the Dectin-1 overexpression model, and the Dectin-1-overexpressing RAW264.7 macrophage supernatant-stimulated HUVEC-induced secondary injury of endothelial function model were established to confirm the efficacy of STDP against M1 macrophage polarization-induced inflammation and endothelial dysfunction. RESULTS: STDP blunted the deterioration of cardiac function and ameliorated CMD by reducing inflammatory cell infiltration and endothelial dysfunction in CMD rats. Endothelial injury and Dectin-1 overexpression induced M1 macrophage polarization and inflammation. Mechanically, STDP hindered M1 macrophage polarization and inflammation by inhibiting the Dectin-1/Syk/IRF5 pathway both in vivo and in vitro. STDP alleviated endothelial dysfunction induced by Dectin-1 overexpression in macrophages. CONCLUSION: STDP can alleviate M1 macrophage polarization-induced inflammation and endothelial dysfunction against CMD via the Dectin-1/Syk/IRF5 pathway. Dectin-1-associated M1 macrophage polarization might be developed as a novel target for ameliorating CMD.


Asunto(s)
Isquemia Miocárdica , Enfermedades Vasculares , Ratas , Animales , Macrófagos , Inflamación/tratamiento farmacológico , Inflamación/metabolismo , Isquemia Miocárdica/metabolismo , Enfermedades Vasculares/metabolismo , Factores Reguladores del Interferón/metabolismo
2.
Phytomedicine ; 111: 154653, 2023 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-36641976

RESUMEN

BACKGROUND: Xingpi Capsule (XP), a commercially available over-the-counter herbal medicine in China, plays a prominent role in treating diarrhea-predominant irritable bowel syndrome (IBS-D). Nevertheless, the potential mechanisms remain unclear. PURPOSE: This study aimed to investigate XP efficacy in IBS-D and elucidate the underlying molecular mechanisms. METHODS: A rat IBS-D model was established by senna decoction gavage combined with restraint stress and swimming exhaustion. The changes in rat body weight and stool were recorded daily. Colon pathological changes and the number of colonic goblet cells of rats were observed by hematoxylin-eosin (HE) staining and Alcian blue plus periodic acid-Schiff (AB-PAS) staining, respectively. The expression of Occludin, a tight-junction-associated protein, was examined via immunohistochemistry. Images of colonic microvilli were obtained by TEM. Western blotting (WB) was used to analyze the protein expression of the ASK1/P38 MAPK pathway. The composition of the rat intestinal microbiota was detected by 16S rRNA sequencing. Changes in colonic metabolites were evaluated by liquid chromatography-mass spectrometry (LC-MS). Changes in colon RNA expression were assessed by RNA sequencing (RNA-Seq). The nontoxic range of hypoxanthine (HPX) was screened by Cell Counting Kit-8 (CCK8), the cell model of human colonic epithelial cells (NCM460) induced by lipopolysaccharide (LPS) was established, and the effective concentration of HPX was screened by CCK8. After transfection of pcDNA3.1-MAP3K5, Hoechst 33,342 staining, flow cytometry to detect cell apoptosis, and immunofluorescence to detect the fluorescence changes of ASK1 and ZO-1. WB detection of ASK1/P38 MAPK pathway protein expression changes. RESULTS: XP increased the body weight of IBS-D patients and reduced the loose stool rate, loose stool index, and Bristo score. In addition, XP mitigated colon lesions, increased the number of goblet cells and the expression of Occludin, and prevented severe distortion and effacement of the microvillous structure. Specifically, 16S rRNA gene sequence analysis showed that XP decreased the abundance of Desulfurium and Prevotella 9 at the phylum and genus levels while increasing the abundance of Bacteroides at the genus level. RNA-Seq combined with WB validation showed that XP exerted antidiarrheal effects by inhibiting the ASK1/P38 MAPK signaling pathway. Additionally, XP also increased the relative expression level of the metabolite HPX, as revealed by untargeted metabolomics analysis. Impressively, the correlation analysis between 16S rRNA sequencing and LC-MS suggested that HPX and Prevotella 9 are negatively correlated, which indicated that XP might increase the content of HPX by reducing the abundance of Prevotella 9. Meanwhile, a negative correlation between HPX and ASK1 was indicated through RNA-Seq and LC-MS, which suggested that the inhibition of ASK1 (Map3k5) may be ascribed to the increase in HPX after XP treatment. In vitro experiments have proven that HPX can alleviate LPS-induced NCM460 damage, specifically manifested as enhancing cell viability, reducing cell apoptosis, increasing ZO-1 expression, reducing the fluorescence intensity of MAP3K5 in the model group, and inhibiting the expression of ASK1/P38 MAPK pathway proteins. The protective effect of HPX was reversed after transfection with pcDNA 3.1-MAP3K5, which fully demonstrated that the protective mechanism of HPX was achieved by inhibiting MAP3K5 and its downstream pathways. CONCLUSION: XP displayed multifaceted protection against IBS-D in rats by regulating the intestinal microbiota, increasing the relative expression level of HPX, a metabolite of the microbiota, and inhibiting the ASK1/P38 MAPK signaling pathway.


Asunto(s)
Síndrome del Colon Irritable , Animales , Humanos , Ratas , Diarrea/tratamiento farmacológico , Síndrome del Colon Irritable/tratamiento farmacológico , Síndrome del Colon Irritable/genética , Lipopolisacáridos , Multiómica , Ocludina , Proteínas Quinasas p38 Activadas por Mitógenos , Proteínas Tirosina Quinasas Receptoras , ARN Ribosómico 16S , Cápsulas
3.
Artículo en Inglés | MEDLINE | ID: mdl-35140803

RESUMEN

Qingre Jiedu (QJ) recipe exerted significant cardioprotective efficacy against heart failure (HF), which is a growing health concern that continues to endanger patients' lives. To investigate the protective properties and mechanism of the QJ recipe, we established hydrogen peroxide (H2O2)-induced H9C2 cells and HF rats. The predicted targets and significant pathways of QJ against HF were collected and screened based on network pharmacology from key ingredients and validated by in vivo and in vitro experiments. The decoction of QJ (0.823 g/kg/day) was intragastrically administered for four weeks. QJ (400 µg/mL) was cultured with H2O2 stimulated in the H9C2 cells. A total of 31 effective active compounds were screened in QJ and covered 277 targets, of which 85 were shared with HF-related targets. In vivo, the QJ recipe remarkably protected heart function and reduced serum IL-1, IL-6, PIIINP, and CIV levels. Furthermore, QJ downregulated the key proteins mediating inflammatory responses (p-IKKα/ß, p-NFκB, and IL-6) and cardiac fibrosis (STAT3 and MMP-9). In vitro, QJ protected the cardiomyocytes against H2O2-stimulated reactive oxygen species (ROS) production and upregulated PI3K and AKT expressions. Further experiments demonstrate that PI3K inhibitor LY294002 remarkably compromised the effects of QJ. In conclusion, our findings indicate that QJ could exert a cardioprotective effect and inhibit fibrosis and inflammation in HF rats via the PI3K-AKT signaling pathway.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA