Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 2 de 2
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Blood Adv ; 8(1): 56-69, 2024 01 09.
Artículo en Inglés | MEDLINE | ID: mdl-37906522

RESUMEN

ABSTRACT: Cysteine is a nonessential amino acid required for protein synthesis, the generation of the antioxidant glutathione, and for synthesizing the nonproteinogenic amino acid taurine. Here, we highlight the broad sensitivity of leukemic stem and progenitor cells to cysteine depletion. By CRISPR/CRISPR-associated protein 9-mediated knockout of cystathionine-γ-lyase, the cystathionine-to-cysteine converting enzyme, and by metabolite supplementation studies upstream of cysteine, we functionally prove that cysteine is not synthesized from methionine in acute myeloid leukemia (AML) cells. Therefore, although perhaps nutritionally nonessential, cysteine must be imported for survival of these specific cell types. Depletion of cyst(e)ine increased reactive oxygen species (ROS) levels, and cell death was induced predominantly as a consequence of glutathione deprivation. nicotinamide adenine dinucleotide phosphate hydrogen oxidase inhibition strongly rescued viability after cysteine depletion, highlighting this as an important source of ROS in AML. ROS-induced cell death was mediated via ferroptosis, and inhibition of glutathione peroxidase 4 (GPX4), which functions in reducing lipid peroxides, was also highly toxic. We therefore propose that GPX4 is likely key in mediating the antioxidant activity of glutathione. In line, inhibition of the ROS scavenger thioredoxin reductase with auranofin also impaired cell viability, whereby we find that oxidative phosphorylation-driven AML subtypes, in particular, are highly dependent on thioredoxin-mediated protection against ferroptosis. Although inhibition of the cystine-glutamine antiporter by sulfasalazine was ineffective as a monotherapy, its combination with L-buthionine-sulfoximine (BSO) further improved AML ferroptosis induction. We propose the combination of either sulfasalazine or antioxidant machinery inhibitors along with ROS inducers such as BSO or chemotherapy for further preclinical testing.


Asunto(s)
Ferroptosis , Leucemia Mieloide Aguda , Humanos , Cisteína/metabolismo , Cisteína/farmacología , Especies Reactivas de Oxígeno/metabolismo , Antioxidantes , Cistationina/farmacología , Sulfasalazina/farmacología , Aminoácidos/farmacología , Glutatión/metabolismo , Glutatión/farmacología , Butionina Sulfoximina/farmacología , Leucemia Mieloide Aguda/tratamiento farmacológico
2.
Arch Immunol Ther Exp (Warsz) ; 65(1): 69-81, 2017 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-27412076

RESUMEN

Activities of the retinoic acid receptor (RAR)α and RARγ are important to hematopoiesis. Here, we have investigated the effects of receptor selective agonists and antagonists on the primitive human hematopoietic cell lines KG1 and NB-4 and purified normal human hematopoietic stem cells (HSCs). Agonizing RARα (by AGN195183) was effective in driving neutrophil differentiation of NB-4 cells and this agonist synergized with a low amount (10 nM) of 1α,25-dihydroxyvitamin D3 to drive monocyte differentiation of NB-4 and KG1 cells. Treatment of cultures of human HSCs (supplemented with stem cell factor ± interleukin 3) with an antagonist of all RARs (AGN194310) or of RARα (AGN196996) prolonged the lifespan of cultures, up to 55 days, and increased the production of neutrophils and monocytes. Slowing down of cell differentiation was not observed, and instead, hematopoietic stem and progenitor cells had expanded in number. Antagonism of RARγ (by AGN205728) did not affect cultures of HSCs. Studies of CV-1 and LNCaP cells transfected with RAR expression vectors and a reporter vector revealed that RARγ and RARß are activated by sub-nM all-trans retinoic acid (EC50-0.3 nM): ~50-fold more is required for activation of RARα (EC50-16 nM). These findings further support the notion that the balance of expression and activity of RARα and RARγ are important to hematopoietic stem and progenitor cell expansion and differentiation.


Asunto(s)
Células Madre Hematopoyéticas/citología , Células Mieloides/inmunología , Receptores de Ácido Retinoico/metabolismo , Receptor alfa de Ácido Retinoico/metabolismo , Animales , Antígenos CD34/metabolismo , Diferenciación Celular , Línea Celular , Línea Celular Tumoral , Proliferación Celular/efectos de los fármacos , Células Cultivadas , Células HL-60 , Haplorrinos , Hematopoyesis , Humanos , Neutrófilos/citología , Unión Proteica , Receptores de Ácido Retinoico/antagonistas & inhibidores , Receptor alfa de Ácido Retinoico/agonistas , Receptor alfa de Ácido Retinoico/antagonistas & inhibidores , Retinoides/farmacología , Tretinoina/química , Receptor de Ácido Retinoico gamma
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA