Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 4 de 4
Filtrar
Más filtros

Bases de datos
Tipo del documento
Intervalo de año de publicación
1.
Ophthalmol Sci ; 3(2): 100263, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36864830

RESUMEN

Purpose: Quantification of retinal xanthophyll carotenoids in eyes with and without age-related macular degeneration (AMD) via macular pigment optical volume (MPOV), a metric for xanthophyll abundance from dual wavelength autofluorescence, plus correlations to plasma levels, could clarify the role of lutein (L) and zeaxanthin (Z) in health, AMD progression, and supplementation strategies. Design: Cross-sectional observational study (NCT04112667). Participants: Adults ≥ 60 years from a comprehensive ophthalmology clinic, with healthy maculas or maculas meeting fundus criteria for early or intermediate AMD. Methods: Macular health and supplement use was assessed by the Age-related Eye Disease Study (AREDS) 9-step scale and self-report, respectively. Macular pigment optical volume was measured from dual wavelength autofluorescence emissions (Spectralis, Heidelberg Engineering). Non-fasting blood draws were assayed for L and Z using high-performance liquid chromatography. Associations among plasma xanthophylls and MPOV were assessed adjusting for age. Main Outcome Measures: Age-related macular degeneration presence and severity, MPOV in fovea-centered regions of radius 2.0° and 9.0°; plasma L and Z (µM/ml). Results: Of 809 eyes from 434 persons (89% aged 60-79, 61% female), 53.3% eyes were normal, 28.2% early AMD, and 18.5% intermediate AMD. Macular pigment optical volume 2° and 9° were similar in phakic and pseudophakic eyes, which were combined for analysis. Macular pigment optical volume 2° and 9° and plasma L and Z were higher in early AMD than normal and higher still in intermediate AMD (P < 0.0001). For all participants, higher plasma L was correlated with higher MPOV 2° (Spearman correlation coefficient [Rs] = 0.49; P < 0.0001). These correlations were significant (P < 0.0001) but lower in normal (Rs = 0.37) than early and intermediate AMD (Rs = 0.52 and 0.51, respectively). Results were similar for MPOV 9°. Plasma Z, MPOV 2°, and MPOV 9° followed this same pattern of associations. Associations were not affected by supplement use or smoking status. Conclusions: A moderate positive correlation of MPOV with plasma L and Z comports with regulated xanthophyll bioavailability and a hypothesized role for xanthophyll transfer in soft drusen biology. An assumption that xanthophylls are low in AMD retina underlies supplementation strategies to reduce progression risk, which our data do not support. Whether higher xanthophyll levels in AMD are due to supplement use cannot be determined in this study.

2.
Invest Ophthalmol Vis Sci ; 63(6): 6, 2022 06 01.
Artículo en Inglés | MEDLINE | ID: mdl-35671050

RESUMEN

Purpose: With age, human retinal pigment epithelium (RPE) accumulates bisretinoid fluorophores that may impact cellular function and contribute to age-related macular degeneration (AMD). Bisretinoids are comprised of a central pyridinium, dihydropyridinium, or cyclohexadiene ring. The pyridinium bisretinoid A2E has been extensively studied, and its quantity in the macula has been questioned. Age-changes and distributions of other bisretinoids are not well characterized. We measured levels of three bisretinoids and oxidized A2E in macula and periphery in human donor eyes of different ages. Methods: Eyes (N = 139 donors, 61 women and 78 men, aged 40-80 years) were dissected into 8 mm diameter macular and temporal periphery punches. Using liquid chromatography - electrospray ionization - mass spectrometry (LC-ESI-MS) and an authentic synthesized standard, we quantified A2E (ng). Using LC-ESI-MS and a 50-eye-extract of A2E, we semiquantified A2E and 3 other compounds (eye extract equivalent units [EEEUs): A2-glycerophosphoethanolamine (A2GPE), dihydropyridine phosphatidyl ethanolamine (A2DHPE), and monofuranA2E (MFA2E). Results: A2E quantities in ng and EEEUs were highly correlated (r = 0.97, P < 0.001). From 262 eyes, 5 to 9-fold higher levels were observed in the peripheral retina than in the macula for all assayed compounds. A2E, A2DHPE, and MFA2E increased with age, whereas A2GPE remained unaffected. No significant right-left or male-female differences were detected. Conclusions: Significantly higher levels were observed in the periphery than in the macula for all assayed compounds signifying biologic differences between these regions. Levels of oxidized A2E parallel native A2E and not the distribution of retinal illuminance. Data will assist with the interpretion of clinical trial outcomes of agents targeting bisretinoid-related pathways.


Asunto(s)
Degeneración Macular , Epitelio Pigmentado de la Retina , Adulto , Anciano , Anciano de 80 o más Años , Femenino , Humanos , Lipofuscina/metabolismo , Degeneración Macular/metabolismo , Masculino , Persona de Mediana Edad , Extractos Vegetales , Compuestos de Piridinio/química , Compuestos de Piridinio/metabolismo , Epitelio Pigmentado de la Retina/metabolismo , Retinoides/metabolismo , Espectrometría de Masa por Ionización de Electrospray/métodos
3.
Invest Ophthalmol Vis Sci ; 58(2): 708-719, 2017 02 01.
Artículo en Inglés | MEDLINE | ID: mdl-28146236

RESUMEN

Purpose: Extracellular deposits containing hydroxyapatite, lipids, proteins, and trace metals that form between the basal lamina of the RPE and the inner collagenous layer of Bruch's membrane are hallmarks of early AMD. We examined whether cultured RPE cells could produce extracellular deposits containing all of these molecular components. Methods: Retinal pigment epithelium cells isolated from freshly enucleated porcine eyes were cultured on Transwell membranes for up to 6 months. Deposit composition and structure were characterized using light, fluorescence, and electron microscopy; synchrotron x-ray diffraction and x-ray fluorescence; secondary ion mass spectroscopy; and immunohistochemistry. Results: Apparently functional primary RPE cells, when cultured on 10-µm-thick inserts with 0.4-µm-diameter pores, can produce sub-RPE deposits that contain hydroxyapatite, lipids, proteins, and trace elements, without outer segment supplementation, by 12 weeks. Conclusions: The data suggest that sub-RPE deposit formation is initiated, and probably regulated, by the RPE, as well as the loss of permeability of the Bruch's membrane and choriocapillaris complex associated with age and early AMD. This cell culture model of early AMD lesions provides a novel system for testing new therapeutic interventions against sub-RPE deposit formation, an event occurring well in advance of the onset of vision loss.


Asunto(s)
Durapatita/metabolismo , Células Epiteliales/metabolismo , Epitelio Pigmentado Ocular/metabolismo , Drusas Retinianas/metabolismo , Animales , Modelos Animales de Enfermedad , Fluorescencia , Inmunohistoquímica , Degeneración Macular/metabolismo , Microscopía Electrónica , Epitelio Pigmentado Ocular/citología , Cultivo Primario de Células , Espectrometría de Masa de Ion Secundario , Porcinos , Difracción de Rayos X
4.
Invest Ophthalmol Vis Sci ; 50(2): 870-7, 2009 Feb.
Artículo en Inglés | MEDLINE | ID: mdl-18806290

RESUMEN

PURPOSE: Throughout adulthood, Bruch membrane (BrM) accumulates esterified cholesterol (EC) associated with abundant 60- to 80-nm-diameter lipoprotein-like particles (LLP), putative apolipoprotein B (apoB) lipoproteins secreted by the retinal pigment epithelium (RPE). In the present study, neutral lipid, phospholipids, and retinoid components of human BrM-LLP were assayed. METHODS: Particles isolated from paired choroids of human donors were subjected to comprehensive lipid profiling (preparative liquid chromatography [LC] gas chromatography [GC]), thin-layer chromatography (TLC), high-performance liquid chromatography (HPLC), Western blot analysis, and negative stain electron microscopy. Results were compared to plasma lipoproteins isolated from normolipemic volunteers and to conditioned medium from RPE-J cells supplemented with palmitate to induce particle synthesis and secretion. RESULTS: EC was the largest component (32.4+/-7.9 mol%) of BrM-LLP lipids. EC was 11.3-fold more abundant than triglyceride (TG), unlike large apoB lipoproteins in plasma. Of the fatty acids (FA) esterified to cholesterol, linoleate (18:2n6) was the most abundant (41.7+/-4.7 mol%). Retinyl ester (RE) was detectable at picomolar levels in BrM-LLP. Notably scarce in any BrM-LLP lipid class was the photoreceptor-abundant FA docosahexaenoate (DHA, 22:6n3). RPE-J cells synthesized apoB and numerous EC-rich spherical particles. CONCLUSIONS: BrM-LLP composition resembles plasma LDL more than it does photoreceptors. An EC-rich core is possible for newly synthesized lipoproteins as well as those processed in plasma. Abundant EC could contribute to a transport barrier in aging and lesion formation in age-related maculopathy (ARM). Analysis of BrM-LLP composition has revealed new aspects of retinal cholesterol and retinoid homeostasis.


Asunto(s)
Lámina Basal de la Coroides/metabolismo , Lipoproteínas/metabolismo , Adulto , Anciano , Anciano de 80 o más Años , Apolipoproteínas B/metabolismo , Western Blotting , Técnicas de Cultivo de Célula , Ésteres del Colesterol/metabolismo , Coroides/metabolismo , Cromatografía Líquida de Alta Presión , Cromatografía Liquida , Cromatografía en Capa Delgada , Femenino , Humanos , Degeneración Macular/metabolismo , Masculino , Persona de Mediana Edad , Epitelio Pigmentado de la Retina/metabolismo
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA