Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Molecules ; 28(17)2023 Aug 30.
Artículo en Inglés | MEDLINE | ID: mdl-37687161

RESUMEN

Alzheimer's (AD) and Parkinson's diseases (PD) are multifactorial neurogenerative disorders of the Central Nervous System causing severe cognitive and motor deficits in elderly people. Because treatment of AD and PD by synthetic drugs alleviates the symptoms often inducing side effects, many studies have aimed to find neuroprotective properties of diet polyphenols, compounds known to act on different cell signaling pathways. In this article, we analyzed the effect of polyphenols obtained from the agro-food industry waste of Citrus limon peel (LPE) on key enzymes of cholinergic and aminergic neurotransmission, such as butyryl cholinesterase (BuChE) and monoamine oxidases (MAO)-A/B, on Aß1-40 aggregation and on superoxide dismutase (SOD) 1/2 that affect oxidative stress. In our in vitro assays, LPE acts as an enzyme inhibitor on BuChE (IC50 ~ 73 µM), MAO-A/B (IC50 ~ 80 µM), SOD 1/2 (IC50 ~ 10-20 µM) and interferes with Aß1-40 peptide aggregation (IC50 ~ 170 µM). These results demonstrate that LPE behaves as a multitargeting agent against key factors of AD and PD by inhibiting to various extents BuChE, MAOs, and SODs and reducing Aß-fibril aggregation. Therefore, LPE is a promising candidate for the prevention and management of AD and PD symptoms in combination with pharmacological therapies.


Asunto(s)
Citrus , Enfermedades Neurodegenerativas , Enfermedad de Parkinson , Enfermedades Neurodegenerativas/tratamiento farmacológico , Superóxido Dismutasa , Monoaminooxidasa , Colinesterasas , Superóxido Dismutasa-1 , Extractos Vegetales/farmacología
2.
Recenti Prog Med ; 114(6): 349-354, 2023 06.
Artículo en Italiano | MEDLINE | ID: mdl-37229681

RESUMEN

The exposome concept arises from the need to integrate different disciplines of public health and environmental sciences, mainly including environmental epidemiology, exposure science, and toxicology. The role of the exposome is to understand how the totality of an individual's exposures throughout the lifetime can impact human health. The etiology of a health condition is rarely explained by a single exposure. Therefore, examining the human exposome as a whole becomes relevant to simultaneously consider multiple risk factors and more accurately estimate concurrent causes of different health outcomes. Generally, the exposome is explained through three domains: general external exposome, specific external exposome, and internal exposome. The general external exposome includes measurable population-level exposures such as air pollution or meteorological factors. The specific external exposome includes information on individual exposures, such as lifestyle factors, typically obtained from questionnaires. Meanwhile, the internal exposome encompasses multiple biological responses to external factors, detected through molecular and omics analyses. Additionally, in recent decades, the socio-exposome theory has emerged, where all exposures are studied as a phenomenon dependent on the interaction between socioeconomic factors that vary depending on the context, allowing the identification of mechanisms that lead to health inequalities. The considerable production of data in exposome studies has led researchers to face new methodological and statistical challenges, introducing various approaches to estimate the effect of the exposome on health. Among the most common are regression models (Exposome-Wide Association Study - ExWAS), dimensionality reduction and exposure grouping techniques, and machine learning methods. The significant conceptual and methodological innovation of the exposome for a more holistic evaluation of the risks associated with human health is continuously expanding and will require further investigations related to the application of information obtained from studies into prevention and public health policies.


Asunto(s)
Contaminación del Aire , Exposoma , Humanos , Exposición a Riesgos Ambientales/efectos adversos , Salud Pública , Contaminación del Aire/efectos adversos , Contaminación del Aire/análisis , Factores de Riesgo
3.
Molecules ; 26(23)2021 Nov 23.
Artículo en Inglés | MEDLINE | ID: mdl-34885656

RESUMEN

Among matrix metalloproteinases (MMPs), MMP-9/2 are key enzymes involved in the proteolysis of extracellular matrices in the inflammatory process and in cancer. Since MMP-9/2 expression levels, activity, and secretion is up-regulated during inflammation in response to pro-inflammatory cytokines, such as interleukin-6 (IL-6), many efforts have been devoted to identifying factors that could inhibit the IL-6-induced MMP-9/2 expression. Up to now, several reports indicated that polyphenols from fruits and vegetables are among the major components of health promotion for their antioxidant properties and also for their anti-inflammatory and anti-cancer agents. Among plant derived polyphenols, lemon (Citrus limon) peel extract (LPE) shows anti-cancer properties in various cancer types. In our previous work, we demonstrated that LPE can reduce IL-6-induced migration/invasiveness and MMP-9/2 up-regulation in some gastric cancer cell lines. This study aims to exploit the anti-cancer properties of LPE using an in vitro system model of inflammation, consisting of IL-6-exposed human primary colon cancer cells. We first analyzed the effect of LPE on IL-6-induced cell migration and invasiveness by wound healing and Boyden chamber assay, respectively. The MMP-2 mRNA expression levels and gelatinolytic activity in the cell culture media were determined by q-PCR analysis and gelatin zymography, respectively, and finally, the effects of LPE on IL-6-induced JAK2/STAT3 signaling pathways have been investigated by Western blotting analysis. Our results show that LPE is able to inhibit the IL-6-dependent cell migration and invasiveness associated with the up-regulation of MMP-2 expression levels and that these effects are correlated to the STAT3 phosphorylation in human primary T88 and T93 colon cancer cells.


Asunto(s)
Antiinflamatorios/farmacología , Antineoplásicos/farmacología , Citrus/química , Neoplasias del Colon/metabolismo , Neoplasias del Colon/patología , Interleucina-6/farmacología , Metaloproteinasa 2 de la Matriz/metabolismo , Extractos Vegetales/farmacología , Polifenoles/farmacología , Transducción de Señal/efectos de los fármacos , Línea Celular Tumoral , Movimiento Celular/efectos de los fármacos , Humanos , Interleucina-6/genética , Metaloproteinasa 9 de la Matriz/metabolismo , Invasividad Neoplásica , Proteínas Recombinantes/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA