Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 9 de 9
Filtrar
1.
Am J Physiol Cell Physiol ; 320(4): C591-C601, 2021 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-33471625

RESUMEN

Disuse-induced muscle atrophy is accompanied by a blunted postprandial response of the mammalian target of rapamycin complex 1 (mTORC1) pathway. Conflicting observations exist as to whether postabsorptive mTORC1 pathway activation is also blunted by disuse and plays a role in atrophy. It is unknown whether changes in habitual protein intake alter mTORC1 regulatory proteins and how they may contribute to the development of anabolic resistance. The primary objective of this study was to characterize the downstream responsiveness of skeletal muscle mTORC1 activation and its upstream regulatory factors, following 14 days of lower limb disuse in middle-aged men (45-60 yr). The participants were further randomized to receive daily supplementation of 20 g/d of protein (n = 12; milk protein concentrate) or isocaloric carbohydrate placebo (n = 13). Immobilization reduced postabsorptive skeletal muscle phosphorylation of the mTORC1 downstream targets, 4E-BP1, P70S6K, and ribosomal protein S6 (RPS6), with phosphorylation of the latter two decreasing to a greater extent in the placebo, compared with the protein supplementation groups (37% ± 13% vs. 14% ± 11% and 38% ± 20% vs. 25% ± 8%, respectively). Sestrin2 protein was also downregulated following immobilization irrespective of supplement group, despite a corresponding increase in its mRNA content. This decrease in Sestrin2 protein was negatively correlated with the immobilization-induced change in the in silico-predicted regulator miR-23b-3p. No other measured upstream proteins were altered by immobilization or supplementation. Immobilization downregulated postabsorptive mTORC1 pathway activation, and 20 g/day of protein supplementation attenuated the decrease in phosphorylation of targets regulating muscle protein synthesis.


Asunto(s)
Suplementos Dietéticos , Diana Mecanicista del Complejo 1 de la Rapamicina/metabolismo , Proteínas de la Leche/administración & dosificación , Atrofia Muscular/dietoterapia , Músculo Cuádriceps/metabolismo , Proteínas Adaptadoras Transductoras de Señales/metabolismo , Proteínas de Ciclo Celular/metabolismo , Humanos , Inmovilización , Masculino , MicroARNs/genética , MicroARNs/metabolismo , Persona de Mediana Edad , Proteínas de la Leche/metabolismo , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Atrofia Muscular/fisiopatología , Proteínas Nucleares/genética , Proteínas Nucleares/metabolismo , Fosforilación , Periodo Posprandial , Músculo Cuádriceps/patología , Músculo Cuádriceps/fisiopatología , Proteína S6 Ribosómica/metabolismo , Proteínas Quinasas S6 Ribosómicas 70-kDa/metabolismo , Transducción de Señal , Factores de Tiempo , Resultado del Tratamiento
2.
Eur J Appl Physiol ; 120(7): 1657-1669, 2020 Jul.
Artículo en Inglés | MEDLINE | ID: mdl-32458156

RESUMEN

PURPOSE: Excess production of reactive oxygen species (ROS) from the mitochondria can promote mitochondrial dysfunction and has been implicated in the development of a range of chronic diseases. As such there is interest in whether mitochondrial-targeted antioxidant supplementation can attenuate mitochondrial-associated oxidative stress. We investigated the effect of MitoQ and CoQ10 supplementation on oxidative stress and skeletal muscle mitochondrial ROS levels and function in healthy middle-aged men. METHODS: Skeletal muscle and blood samples were collected from twenty men (50 ± 1 y) before and following six weeks of daily supplementation with MitoQ (20 mg) or CoQ10 (200 mg). High-resolution respirometry was used to determine mitochondrial respiration and H2O2 levels, markers of mitochondrial mass and antioxidant defences were measured in muscle samples and oxidative stress markers in urine and blood samples. RESULTS: Both MitoQ and CoQ10 supplementation suppressed mitochondrial net H2O2 levels during leak respiration, while MitoQ also elevated muscle catalase expression. However, neither supplement altered urine F2-isoprostanes nor plasma TBARS levels. Neither MitoQ nor CoQ10 supplementation had a significant impact on mitochondrial respiration or mitochondrial density markers (citrate synthase, mtDNA/nDNA, PPARGC1A, OXPHOS expression). CONCLUSION: Our results suggest that neither MitoQ and CoQ10 supplements impact mitochondrial function, but both can mildly suppress mitochondrial ROS levels in healthy middle-aged men, with some indication that MitoQ may be more effective than CoQ10.


Asunto(s)
Peróxido de Hidrógeno/metabolismo , Mitocondrias/metabolismo , Músculo Esquelético/metabolismo , Ubiquinona/análogos & derivados , Adulto , Antioxidantes/farmacología , Suplementos Dietéticos , Humanos , Masculino , Persona de Mediana Edad , Estrés Oxidativo/efectos de los fármacos , Especies Reactivas de Oxígeno/metabolismo , Ubiquinona/metabolismo
3.
J Am Soc Nephrol ; 31(5): 962-982, 2020 05.
Artículo en Inglés | MEDLINE | ID: mdl-32198276

RESUMEN

BACKGROUND: Mutations in CTNS-a gene encoding the cystine transporter cystinosin-cause the rare, autosomal, recessive, lysosomal-storage disease cystinosis. Research has also implicated cystinosin in modulating the mTORC1 pathway, which serves as a core regulator of cellular metabolism, proliferation, survival, and autophagy. In its severest form, cystinosis is characterized by cystine accumulation, renal proximal tubule dysfunction, and kidney failure. Because treatment with the cystine-depleting drug cysteamine only slows disease progression, there is an urgent need for better treatments. METHODS: To address a lack of good human-based cell culture models for studying cystinosis, we generated the first human induced pluripotent stem cell (iPSC) and kidney organoid models of the disorder. We used a variety of techniques to examine hallmarks of cystinosis-including cystine accumulation, lysosome size, the autophagy pathway, and apoptosis-and performed RNA sequencing on isogenic lines to identify differentially expressed genes in the cystinosis models compared with controls. RESULTS: Compared with controls, these cystinosis models exhibit elevated cystine levels, increased apoptosis, and defective basal autophagy. Cysteamine treatment ameliorates this phenotype, except for abnormalities in apoptosis and basal autophagy. We found that treatment with everolimus, an inhibitor of the mTOR pathway, reduces the number of large lysosomes, decreases apoptosis, and activates autophagy, but it does not rescue the defect in cystine loading. However, dual treatment of cystinotic iPSCs or kidney organoids with cysteamine and everolimus corrects all of the observed phenotypic abnormalities. CONCLUSIONS: These observations suggest that combination therapy with a cystine-depleting drug such as cysteamine and an mTOR pathway inhibitor such as everolimus has potential to improve treatment of cystinosis.


Asunto(s)
Cisteamina/uso terapéutico , Cistinosis/tratamiento farmacológico , Modelos Animales de Enfermedad , Everolimus/uso terapéutico , Células Madre Pluripotentes Inducidas/trasplante , Organoides/trasplante , Serina-Treonina Quinasas TOR/antagonistas & inhibidores , Sistemas de Transporte de Aminoácidos Neutros/deficiencia , Sistemas de Transporte de Aminoácidos Neutros/genética , Animales , Autofagia/efectos de los fármacos , Sistemas CRISPR-Cas , Línea Celular , Cisteamina/farmacología , Cistina/sangre , Evaluación Preclínica de Medicamentos , Quimioterapia Combinada , Everolimus/farmacología , Edición Génica , Xenoinjertos , Humanos , Células Madre Pluripotentes Inducidas/metabolismo , Células Madre Pluripotentes Inducidas/ultraestructura , Lisosomas/efectos de los fármacos , Lisosomas/ultraestructura , Ratones , Ratones SCID , Organoides/metabolismo , Fenotipo
4.
J Appl Physiol (1985) ; 125(2): 271-286, 2018 08 01.
Artículo en Inglés | MEDLINE | ID: mdl-29698111

RESUMEN

Strenuous exercise can result in skeletal muscle damage, leading to the systemic mobilization, activation, and intramuscular accumulation of blood leukocytes. Eicosanoid metabolites of arachidonic acid (ARA) are potent inflammatory mediators, but whether changes in dietary ARA intake influence exercise-induced inflammation is not known. This study investigated the effect of 4 wk of dietary supplementation with 1.5 g/day ARA ( n = 9, 24 ± 1.5 yr) or corn-soy oil placebo ( n = 10, 26 ± 1.3 yr) on systemic and intramuscular inflammatory responses to an acute bout of resistance exercise (8 sets each of leg press and extension at 80% one-repetition maximum) in previously trained men. Whole EDTA blood, serum, peripheral blood mononuclear cells (PMBCs), and skeletal muscle biopsies were collected before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. ARA supplementation resulted in higher exercise-stimulated serum creatine kinase activity [incremental area under the curve (iAUC) P = 0.046] and blood leukocyte counts (iAUC for total white cells, P < 0.001; neutrophils: P = 0.007; monocytes: P = 0.015). The exercise-induced fold change in peripheral blood mononuclear cell mRNA expression of interleukin-1ß ( IL1B), CD11b ( ITGAM), and neutrophil elastase ( ELANE), as well as muscle mRNA expression of the chemokines interleukin-8 ( CXCL8) and monocyte chemoattractant protein 1 ( CCL2) was also greater in the ARA group than placebo. Despite this, ARA supplementation did not influence the histological presence of leukocytes within muscle, perceived muscle soreness, or the extent and duration of muscle force loss. These data show that ARA supplementation transiently increased the inflammatory response to acute resistance exercise but did not impair recovery. NEW & NOTEWORTHY Daily arachidonic acid supplementation for 4 wk in trained men augmented the acute systemic and intramuscular inflammatory response to a subsequent bout of resistance exercise. Greater exercise-induced inflammatory responses in men receiving arachidonic acid supplementation were not accompanied by increased symptoms of exercise-induced muscle damage. Although increased dietary arachidonic acid intake does not appear to influence basal inflammation in humans, the acute inflammatory response to exercise stress is transiently increased following arachidonic acid supplementation.


Asunto(s)
Ácido Araquidónico/administración & dosificación , Ejercicio Físico/fisiología , Inflamación/tratamiento farmacológico , Entrenamiento de Fuerza/efectos adversos , Adolescente , Adulto , Antígeno CD11b/metabolismo , Quimiocina CCL2/metabolismo , Creatina Quinasa/metabolismo , Suplementos Dietéticos , Humanos , Inflamación/metabolismo , Interleucina-1beta/metabolismo , Interleucina-8/metabolismo , Elastasa de Leucocito/metabolismo , Leucocitos Mononucleares/efectos de los fármacos , Leucocitos Mononucleares/metabolismo , Masculino , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/efectos de los fármacos , Músculo Esquelético/metabolismo , Mialgia/tratamiento farmacológico , Mialgia/metabolismo , ARN Mensajero/metabolismo , Adulto Joven
5.
J Appl Physiol (1985) ; 124(4): 1080-1091, 2018 04 01.
Artículo en Inglés | MEDLINE | ID: mdl-29389245

RESUMEN

Arachidonic acid (ARA), a polyunsaturated ω-6 fatty acid, acts as precursor to a number of prostaglandins with potential roles in muscle anabolism. It was hypothesized that ARA supplementation might enhance the early anabolic response to resistance exercise (RE) by increasing muscle protein synthesis (MPS) via mammalian target of rapamycin (mTOR) pathway activation and/or the late anabolic response by modulating ribosome biogenesis and satellite cell expansion. Nineteen men with ≥1 yr of resistance-training experience were randomized to consume either 1.5 g daily ARA or a corn-soy-oil placebo in a double-blind manner for 4 wk. Participants then undertook fasted RE (8 sets each of leg press and extension at 80% 1-repetition maximum), with vastus lateralis biopsies obtained before exercise, immediately postexercise, and at 2, 4, and 48 h of recovery. MPS (measured via stable isotope infusion) was not different between groups ( P = 0.212) over the 4-h recovery period. mTOR pathway members p70 S6 kinase and S6 ribosomal protein were phosphorylated postexercise ( P < 0.05), with no difference between groups. 45S preribosomal RNA increased 48 h after exercise only in ARA ( P = 0.012). Neural cell adhesion molecule-positive satellite cells per fiber increased 48 h after exercise ( P = 0.013), with no difference between groups ( P = 0.331). Prior ARA supplementation did not alter the acute anabolic response to RE in previously resistance-trained men; however, at 48 h of recovery, ribosome biogenesis was stimulated only in the ARA group. The findings do not support a mechanistic link between ARA and short-term anabolism, but ARA supplementation in conjunction with resistance training may stimulate increases in translational capacity. NEW & NOTEWORTHY Four weeks of daily arachidonic acid supplementation in trained men did not alter their acute muscle protein synthetic or anabolic signaling response to resistance exercise. However, 48 h after exercise, men supplemented with arachidonic acid showed greater ribosome biogenesis and a trend toward greater change in satellite cell content. Chronic arachidonic acid supplementation does not appear to regulate the acute anabolic response to resistance exercise but may augment muscle adaptation in the following days of recovery.


Asunto(s)
Ácido Araquidónico/administración & dosificación , Proteínas Musculares/biosíntesis , Músculo Esquelético/efectos de los fármacos , Entrenamiento de Fuerza , Adulto , Suplementos Dietéticos , Humanos , Sistema de Señalización de MAP Quinasas , Masculino , Ribosomas/metabolismo , Células Satélite del Músculo Esquelético , Adulto Joven
6.
Artículo en Inglés | MEDLINE | ID: mdl-29413364

RESUMEN

Arachidonic acid (ARA), an omega-6 polyunsaturated fatty acid (PUFA), is the metabolic precursor to the eicosanoid family of lipid mediators. Eicosanoids have potent pro-inflammatory actions, but also act as important autocrine/paracrine signaling molecules in skeletal muscle growth and development. Whether dietary ARA is incorporated into skeletal muscle phospholipids and the resulting impact on intramuscular inflammatory and adaptive processes in-vivo is not known. In the current study, resistance trained men (≥1 year) received dietary supplementation with 1.5g/day ARA (n=9, 24 ± 1.5 years) or placebo (n=10, 26 ± 1.3 years) for 4-weeks while continuing their normal training regimen. Plasma and vastus lateralis muscle biopsies were collected in an overnight fasted state at baseline and week 4. ARA supplementation increased plasma content of ARA and gamma-linolenic acid, while decreasing relative abundance of linoleic acid, eicosapentaenoic acid, and dihomo-gamma-linolenic acid. In skeletal muscle, ARA and dihomo-gamma-linolenic acid content increased, whereas alpha-linolenic-acid was reduced. Compared to placebo, ARA supplementation reduced circulating platelet and monocyte number, and decreased the mRNA expression of the immune cell surface markers; neutrophil elastase/CD66b and interleukin 1-beta, in peripheral blood mononuclear cells. In muscle, ARA supplementation increased mRNA expression of the myogenic regulatory factors; MyoD and myogenin, but had no effect on a range of immune cell markers or inflammatory cytokines. These data show that dietary ARA supplementation can rapidly and safely modulate plasma and muscle fatty acid profile and promote myogenic gene expression in resistance trained men, without a risk of increasing basal systemic or intramuscular inflammation.


Asunto(s)
Ácido Araquidónico/farmacología , Inflamación/dietoterapia , Lípidos/análisis , Músculo Esquelético/efectos de los fármacos , Adolescente , Adulto , Ácido Araquidónico/administración & dosificación , Análisis Químico de la Sangre , Composición Corporal/efectos de los fármacos , Suplementos Dietéticos , Ácidos Grasos/análisis , Ácidos Grasos/sangre , Regulación de la Expresión Génica/efectos de los fármacos , Humanos , Leucocitos Mononucleares/efectos de los fármacos , Metabolismo de los Lípidos/efectos de los fármacos , Lípidos/sangre , Masculino , Músculo Esquelético/metabolismo
7.
Mol Nutr Food Res ; 62(7): e1701028, 2018 04.
Artículo en Inglés | MEDLINE | ID: mdl-29377592

RESUMEN

Limb immobilization results in a rapid loss of muscle size and strength. The resultant alterations in signaling pathways governing myogenesis, catabolism, and mitochondrial biogenesis are likely to include posttranscriptional regulation mediated by altered microRNAs (miRNAs). Given that protein ingestion exerts an anabolic action and may act as a countermeasure to mitigate muscle loss with immobilization, it is important to examine miRNA in this context. The objective of the study is therefore to characterize the vastus lateralis miRNA response to 14 days of disuse in males (45-60 years) randomized to receive supplementation with 20 g d-1 of dairy protein (n = 12) or isocaloric carbohydrate placebo (n = 13). Biopsies are collected before and after a 2-week immobilization period. Of the 24 miRNAs previously identified in myogenic regulation, seven (miR-133a, -206, -15a, -451a, -126, -208b, and let-7e) are increased with immobilization irrespective of group; five (miR-16, -494, let-7a, -7c, and 7d) increased only in the carbohydrate group; and eight (miR-1, -486, -23a, -23b, -26a, -148b, let-7b, and -7g) are divergently expressed between groups (suppressed with protein). The ability of protein supplementation to differentially regulate miRNAs involved in key muscle regulatory pathways following short-term limb immobilization reflects potential protective function in mitigating muscle loss during limb immobilization.


Asunto(s)
Suplementos Dietéticos , Regulación de la Expresión Génica , MicroARNs/metabolismo , Proteínas de la Leche/uso terapéutico , Músculo Esquelético/metabolismo , Atrofia Muscular/prevención & control , Restricción Física/efectos adversos , Bebidas , Biopsia con Aguja , Desayuno , Estudios de Cohortes , Perfilación de la Expresión Génica , Humanos , Rodilla , Extremidad Inferior , Masculino , Persona de Mediana Edad , Músculo Esquelético/patología , Atrofia Muscular/etiología , Atrofia Muscular/metabolismo , Atrofia Muscular/patología , Músculo Cuádriceps
8.
J Appl Physiol (1985) ; 124(3): 717-728, 2018 03 01.
Artículo en Inglés | MEDLINE | ID: mdl-29122965

RESUMEN

Muscle disuse results in the loss of muscular strength and size, due to an imbalance between protein synthesis (MPS) and breakdown (MPB). Protein ingestion stimulates MPS, although it is not established if protein is able to attenuate muscle loss with immobilization (IM) or influence the recovery consisting of ambulatory movement followed by resistance training (RT). Thirty men (49.9 ± 0.6 yr) underwent 14 days of unilateral leg IM, 14 days of ambulatory recovery (AR), and a further six RT sessions over 14 days. Participants were randomized to consume an additional 20 g of dairy protein or placebo with a meal during the intervention. Isometric knee extension strength was reduced following IM (-24.7 ± 2.7%), partially recovered with AR (-8.6 ± 2.6%), and fully recovered after RT (-0.6 ± 3.4%), with no effect of supplementation. Thigh muscle cross-sectional area decreased with IM (-4.1 ± 0.5%), partially recovered with AR (-2.1 ± 0.5%), and increased above baseline with RT (+2.2 ± 0.5%), with no treatment effect. Myofibrillar MPS, measured using deuterated water, was unaltered by IM, with no effect of protein. During AR, MPS was increased only with protein supplementation. Protein supplementation did not attenuate the loss of muscle size and function with disuse or potentiate recovery but enhanced myofibrillar MPS during AR. NEW & NOTEWORTHY Twenty grams of daily protein supplementation does not attenuate the loss of muscle size and function induced by 2 wk of muscle disuse or potentiate recovery in middle-age men. Average mitochondrial but not myofibrillar muscle protein synthesis was attenuated during immobilization with no effect of supplementation. Protein supplementation increased myofibrillar protein synthesis during a 2-wk period of ambulatory recovery following disuse but without group differences in phenotype recovery.


Asunto(s)
Inmovilización/efectos adversos , Proteínas de la Leche/uso terapéutico , Músculo Esquelético/efectos de los fármacos , Atrofia Muscular/prevención & control , Citrato (si)-Sintasa/metabolismo , Suplementos Dietéticos , Ejercicio Físico , Humanos , Masculino , Persona de Mediana Edad , Proteínas de la Leche/farmacología , Proteínas Musculares/biosíntesis , Proteínas Musculares/metabolismo , Fuerza Muscular/efectos de los fármacos , Músculo Esquelético/diagnóstico por imagen , Músculo Esquelético/metabolismo , Atrofia Muscular/etiología , Proteínas Ligasas SKP Cullina F-box/metabolismo
9.
Physiol Rep ; 2(8)2014 Aug 01.
Artículo en Inglés | MEDLINE | ID: mdl-25107987

RESUMEN

Resistance exercise and whey protein supplementation are effective strategies to activate muscle cell anabolic signaling and ultimately promote increases in muscle mass and strength. In the current study, 46 healthy older men aged 60-75 (69.0 ± 0.55 years, 85.9 ± 1.8 kg, 176.8 ± 1.0 cm) performed a single bout of unaccustomed lower body resistance exercise immediately followed by ingestion of a noncaloric placebo beverage or supplement containing 10, 20, 30, or 40 g of whey protein concentrate (WPC). Intramuscular amino acid levels in muscle biopsy samples were measured by Gas Chromatography-Mass Spectrometry (GC-MS) at baseline (before exercise and WPC supplementation) plus at 2 h and 4 h post exercise. Additionally, the extent of p70S6K phosphorylation at Thr389 in muscle biopsy homogenates was assessed by western blot. Resistance exercise alone reduced intramuscular branch chain amino acid (BCAA; leucine, isoleucine, and valine) content. Supplementation with increasing doses of whey protein prevented this fall in muscle BCAAs during postexercise recovery and larger doses (30 g and 40 g) significantly augmented postexercise muscle BCAA content above that observed following placebo ingestion. Additionally, the fold change in the phosphorylation of p70S6K (Thr389) at 2 h post exercise was correlated with the dose of whey protein consumed (r = 0.51, P < 001) and was found to be significantly correlated with intramuscular leucine content (r = 0.32, P = 0.026). Intramuscular BCAAs, and leucine in particular, appear to be important regulators of anabolic signaling in aged human muscle during postexercise recovery via reversal of exercise-induced declines in intramuscular BCAAs.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA