Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 3 de 3
Filtrar
Más filtros

Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Water Res ; 235: 119824, 2023 May 15.
Artículo en Inglés | MEDLINE | ID: mdl-36913811

RESUMEN

Aluminum salts are widely used to immobilize phosphorus (P) in lakes suffering from internal loading. However, longevity of treatments varies among lakes; some lakes eutrophy faster than others. We conducted biogeochemical investigations of sediments of a closed artificial Lake Barleber, Germany that was successfully remediated with aluminum sulfate in 1986. The lake became mesotrophic for almost 30 years; a rather rapid re-eutrophication took place in 2016 leading to massive cyanobacterial blooms. We quantified internal loading from sediment and analyzed two environmental factors that might have contributed to the sudden shift in trophic state. Increase in lake P concentration started in 2016, reaching 0.3 mg L-1, and remained elevated into the spring of 2018. Reducible P fraction in the sediment was 37 - 58% of total P, indicating a high potential for mobilization of benthic P during anoxia. Estimated P release from sediments for 2017 was approximately 600 kg for the whole lake. This is consistent with sediment incubation results; higher temperature (20°C) and anoxia contributed to release of P (27.9 ± 7.1 mg m-2 d-1, 0.94 ± 0.23 mmol m-2 d-1) to the lake, triggering re-eutrophication. Loss of aluminum P adsorption capacity together with anoxia and high water temperatures (organic matter mineralization) are major drivers of re-eutrophication. Accordingly, treated lakes at some time require a repeated aluminum treatment for sustaining acceptable water quality and we recommend regular sediment monitoring in treated lakes. This is crucial given the effects of climate warming on duration of stratification in lakes which may result in the need for treatment of many lakes.


Asunto(s)
Aluminio , Lagos , Humanos , Fósforo/análisis , Sedimentos Geológicos , Compuestos de Alumbre , Eutrofización , Hipoxia , Monitoreo del Ambiente
2.
Environ Sci Technol ; 57(9): 4003-4013, 2023 03 07.
Artículo en Inglés | MEDLINE | ID: mdl-36802563

RESUMEN

Phosphorus (P) precipitation is among the most effective treatments to mitigate lake eutrophication. However, after a period of high effectiveness, studies have shown possible re-eutrophication and the return of harmful algal blooms. While such abrupt ecological changes were attributed to the internal P loading, the role of lake warming and its potential synergistic effects with internal loading, thus far, has been understudied. Here, in a eutrophic lake in central Germany, we quantified the driving mechanisms of the abrupt re-eutrophication and cyanobacterial blooms in 2016 (30 years after the first P precipitation). A process-based lake ecosystem model (GOTM-WET) was established using a high-frequency monitoring data set covering contrasting trophic states. Model analyses suggested that the internal P release accounted for 68% of the cyanobacterial biomass proliferation, while lake warming contributed to 32%, including direct effects via promoting growth (18%) and synergistic effects via intensifying internal P loading (14%). The model further showed that the synergy was attributed to prolonged lake hypolimnion warming and oxygen depletion. Our study unravels the substantial role of lake warming in promoting cyanobacterial blooms in re-eutrophicated lakes. The warming effects on cyanobacteria via promoting internal loading need more attention in lake management, particularly for urban lakes.


Asunto(s)
Cianobacterias , Lagos , Lagos/microbiología , Ecosistema , Eutrofización , Nutrientes , Floraciones de Algas Nocivas , Fósforo/análisis , China
3.
Environ Sci Pollut Res Int ; 29(23): 34105-34118, 2022 May.
Artículo en Inglés | MEDLINE | ID: mdl-35034298

RESUMEN

Tanzania is the only country bordering all three transboundary East African Great Lakes, i.e., Lake Victoria, Lake Tanganyika, and Lake Nyasa (Lake Malawi). This study investigated the spatiotemporal variability of basic physicochemical parameters of nearshore surface waters in Mwanza Gulf (Lake Victoria), Kigoma Bay (Lake Tanganyika), and Wissmann Bay (Lake Nyasa). Water quality was evaluated using the water quality index (WQI) method. Results showed that N and P nutrient pollution was relatively severe in central and southern parts of Mwanza Gulf owing to external agricultural emissions and internal release associated with physically disturbed sediment resuspension. External inputs from inflowing surface runoffs from the city of Mwanza typically enhanced N loading in northern parts of the gulf during the rainy season. Poor water quality was found in central and southern parts of Mwanza Gulf, especially in the rainy season. Algal blooms and NH4+-N (total P and total N) were the main factors driving water quality degradation in the rainy (dry) season. Kigoma Bay and Wissmann Bay both had good water quality, except in river mouth areas in Lake Nyasa during the rainy season. The degradation in water quality was caused primarily by increased land-based nutrient and turbidity inputs. To respond to challenges associated with climate change and local socioeconomic development, long-term monitoring of the lacustrine environment and systematic limnological studies will be required, not only in the three bays but also more widely throughout the three lakes and their basins.


Asunto(s)
Lagos , Calidad del Agua , China , Monitoreo del Ambiente , Eutrofización , Nitrógeno/análisis , Fósforo/análisis , Tanzanía
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA