Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 5 de 5
Filtrar
Más filtros

Bases de datos
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
Int J Mol Sci ; 25(2)2024 Jan 17.
Artículo en Inglés | MEDLINE | ID: mdl-38256191

RESUMEN

DNA methylation is widely found in higher plants and can control gene expression by regulation without changing the DNA sequence. In this study, the whole-genome methylation map of sugar beet was constructed by WGBS (whole-genome bisulfite sequencing) technology, and the results of WGBS were verified by bisulfite transformation, indicating that the results of WGBS technology were reliable. In addition, 12 differential methylation genes (DMGs) were identified, which were related to carbohydrate and energy metabolism, pollen wall development, and endogenous hormone regulation. Quantitative real-time PCR (qRT-PCR) showed that 75% of DMG expression levels showed negative feedback with methylation level, indicating that DNA methylation can affect gene expression to a certain extent. In addition, we found hypermethylation inhibited gene expression, which laid a foundation for further study on the molecular mechanism of DNA methylation at the epigenetic level in sugar beet male sterility.


Asunto(s)
Beta vulgaris , Metilación de ADN , Sulfitos , Beta vulgaris/genética , Infertilidad Vegetal/genética , Verduras , Azúcares
2.
Int J Mol Sci ; 23(17)2022 Aug 24.
Artículo en Inglés | MEDLINE | ID: mdl-36076993

RESUMEN

Salinity is one of the most serious threats to agriculture worldwide. Sugar beet is an important sugar-yielding crop and has a certain tolerance to salt; however, the genome-wide dynamic response to salt stress remains largely unknown in sugar beet. In the present study, physiological and transcriptome analyses of sugar beet leaves and roots were compared under salt stress at five time points. The results showed that different salt stresses influenced phenotypic characteristics, leaf relative water content and root activity in sugar beet. The contents of chlorophyll, malondialdehyde (MDA), the activities of peroxidase (POD), superoxide dismutase (SOD), and catalase (CAT) were also affected by different salt stresses. Compared with control plants, there were 7391 and 8729 differentially expressed genes (DEGs) in leaves and roots under salt stress, respectively. A total of 41 hub genes related to salt stress were identified by weighted gene co-expression network analysis (WGCNA) from DEGs, and a transcriptional regulatory network based on these genes was constructed. The expression pattern of hub genes under salt stress was confirmed by qRT-PCR. In addition, the metabolite of sugar beet was compared under salt stress for 24 h. A total of 157 and 157 differentially accumulated metabolites (DAMs) were identified in leaves and roots, respectively. Kyoto Encyclopedia of Genes and Genomes (KEGG) pathway analysis further indicated that DEGs and DAMs act on the starch and sucrose metabolism, alpha-linolenic acid metabolism, phenylpropanoid biosynthesis and plant hormone signal transduction pathway. In this study, RNA-seq, WGCNA analysis and untargeted metabolomics were combined to investigate the transcriptional and metabolic changes of sugar beet during salt stress. The results provided new insights into the molecular mechanism of sugar beet response to salt stress, and also provided candidate genes for sugar beet improvement.


Asunto(s)
Beta vulgaris , Beta vulgaris/fisiología , Perfilación de la Expresión Génica , Regulación de la Expresión Génica de las Plantas , Metaboloma , Raíces de Plantas/genética , Raíces de Plantas/metabolismo , Estrés Salino/genética , Estrés Fisiológico/genética , Azúcares/metabolismo , Transcriptoma
3.
PeerJ ; 10: e12719, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35036097

RESUMEN

In eukaryotes, N6 -methyladenosine (m6A) is the most abundant and highly conserved RNA modification. In vivo, m6A demethylase dynamically regulates the m6A level by removing the m6A marker where it plays an important role in plant growth, development and response to abiotic stress. The confirmed m6A demethylases in Arabidopsis thaliana include ALKBH9B and ALKBH10B, both belonging to the ALKB family. In this study, BvALKB family members were identified in sugar beet genome-wide database, and their conserved domains, gene structures, chromosomal locations, phylogeny, conserved motifs and expression of BvALKB genes were analyzed. Almost all BvALKB proteins contained the conserved domain of 2OG-Fe II-Oxy. Phylogenetic analysis suggested that the ten proteins were clustered into five groups, each of which had similar motifs and gene structures. Three Arabidopsis m6A demethylase-homologous proteins (BvALKBH6B, BvALKBH8B and BvALKBH10B) were of particular interest in our study. Expression profile analysis showed that almost all genes were up-regulated or down-regulated to varying degrees under salt stress. More specifically, BvALKBH10B homologous to AtALKBH10B was significantly up-regulated, suggesting that the transcriptional activity of this gene is responsive to salt stress. This study provides a theoretical basis for further screening of m6A demethylase in sugar beet, and also lays a foundation for studying the role of ALKB family proteins in growth, development and response to salinity stress.


Asunto(s)
Arabidopsis , Beta vulgaris , Arabidopsis/genética , Beta vulgaris/genética , Filogenia , Estrés Salino/genética , Estrés Fisiológico/genética , Azúcares/metabolismo , Genoma de Planta , Adenosina/metabolismo
4.
BMC Plant Biol ; 20(1): 347, 2020 Jul 22.
Artículo en Inglés | MEDLINE | ID: mdl-32698773

RESUMEN

BACKGROUND: Salinity is one of the most serious threats to world agriculture. An important sugar-yielding crop sugar beet, which shows some tolerance to salt via a mechanism that is poorly understood. Proteomics data can provide important clues that can contribute to finally understand this mechanism. RESULTS: Differentially abundant proteins (DAPs) in sugar beet under salt stress treatment were identified in leaves (70 DAPs) and roots (76 DAPs). Functions of these DAPs were predicted, and included metabolism and cellular, environmental information and genetic information processing. We hypothesize that these processes work in concert to maintain cellular homeostasis. Some DAPs are closely related to salt resistance, such as choline monooxygenase, betaine aldehyde dehydrogenase, glutathione S-transferase (GST) and F-type H+-transporting ATPase. The expression pattern of ten DAPs encoding genes was consistent with the iTRAQ data. CONCLUSIONS: During sugar beet adaptation to salt stress, leaves and roots cope using distinct mechanisms of molecular metabolism regulation. This study provides significant insights into the molecular mechanism underlying the response of higher plants to salt stress, and identified some candidate proteins involved in salt stress countermeasures.


Asunto(s)
Beta vulgaris/fisiología , Hojas de la Planta/metabolismo , Proteínas de Plantas/análisis , Raíces de Plantas/metabolismo , Estrés Salino/fisiología , Adaptación Fisiológica , Biología Computacional , Regulación de la Expresión Génica de las Plantas , Proteínas de Plantas/genética , Proteínas de Plantas/metabolismo , Proteómica/métodos , Salinidad
5.
Int J Mol Sci ; 22(1)2020 Dec 30.
Artículo en Inglés | MEDLINE | ID: mdl-33396637

RESUMEN

Sugar beet is an important sugar-yielding crop with some tolerance to salt, but the mechanistic basis of this tolerance is not known. In the present study, we have used whole-transcriptome RNA-seq and degradome sequencing in response to salt stress to uncover differentially expressed (DE) mRNAs, microRNAs (miRNAs), long non-coding RNAs (lncRNAs) and circular RNAs (circRNAs) in both leaves and roots. A competitive endogenous RNA (ceRNA) network was constructed with the predicted DE pairs, which revealed regulatory roles under salt stress. A functional analysis suggests that ceRNAs are implicated in copper redistribution, plasma membrane permeability, glycometabolism and energy metabolism, NAC transcription factor and the phosphoinositol signaling system. Overall, we conducted for the first time a full transcriptomic analysis of sugar beet under salt stress that involves a potential ceRNA network, thus providing a basis to study the potential functions of lncRNAs/circRNAs.


Asunto(s)
Beta vulgaris/genética , Secuenciación del Exoma/métodos , Perfilación de la Expresión Génica/métodos , Redes Reguladoras de Genes , ARN de Planta/genética , Estrés Salino/genética , Regulación de la Expresión Génica de las Plantas/efectos de los fármacos , Ontología de Genes , MicroARNs/genética , Hojas de la Planta/genética , Raíces de Plantas/genética , ARN Circular/genética , ARN Largo no Codificante/genética , ARN Mensajero/genética , Salinidad , Cloruro de Sodio/farmacología
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA