Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 7 de 7
Filtrar
1.
Biol Res ; 56(1): 65, 2023 Dec 02.
Artículo en Inglés | MEDLINE | ID: mdl-38041203

RESUMEN

BACKGROUND: Impaired pattern separation occurs in the early stage of Alzheimer's disease (AD), and hippocampal dentate gyrus (DG) neurogenesis participates in pattern separation. Here, we investigated whether spatial memory discrimination impairment can be improved by promoting the hippocampal DG granule cell neogenesis-mediated pattern separation in the early stage of AD by electroacupuncture (EA). METHODS: Five familial AD mutations (5 × FAD) mice received EA treatment at Baihui and Shenting points for 4 weeks. During EA, mice were intraperitoneally injected with BrdU (50 mg/kg) twice a day. rAAV containing Wnt5a shRNA was injected into the bilateral DG region, and the viral efficiency was evaluated by detecting Wnt5a mRNA levels. Cognitive behavior tests were conducted to assess the impact of EA treatment on cognitive function. The hippocampal DG area Aß deposition level was detected by immunohistochemistry after the intervention; The number of BrdU+/CaR+ cells and the gene expression level of calretinin (CaR) and prospero homeobox 1(Prox1) in the DG area of the hippocampus was detected to assess neurogenesis by immunofluorescence and western blotting after the intervention; The gene expression levels of FZD2, Wnt5a, DVL2, p-DVL2, CaMKII, and p-CaMKII in the Wnt signaling pathway were detected by Western blotting after the intervention. RESULTS: Cognitive behavioral tests showed that 5 × FAD mice had impaired pattern separation (P < 0.001), which could be improved by EA (P < 0.01). Immunofluorescence and Western blot showed that the expression of Wnt5a in the hippocampus was decreased (P < 0.001), and the neurogenesis in the DG was impaired (P < 0.001) in 5 × FAD mice. EA could increase the expression level of Wnt5a (P < 0.05) and promote the neurogenesis of immature granule cells (P < 0.05) and the development of neuronal dendritic spines (P < 0.05). Interference of Wnt5a expression aggravated the damage of neurogenesis (P < 0.05), weakened the memory discrimination ability (P < 0.05), and inhibited the beneficial effect of EA (P < 0.05) in AD mice. The expression level of Wnt pathway related proteins such as FZD2, DVL2, p-DVL2, CAMKII, p-CAMKII increased after EA, but the effect of EA was inhibited after Wnt5a was knocked down. In addition, EA could reduce the deposition of Aß plaques in the DG without any impact on Wnt5a. CONCLUSION: EA can promote hippocampal DG immature granule cell neogenesis-mediated pattern separation to improve spatial memory discrimination impairment by regulating Wnt5a in 5 × FAD mice.


Asunto(s)
Enfermedad de Alzheimer , Electroacupuntura , Ratones , Animales , Enfermedad de Alzheimer/terapia , Enfermedad de Alzheimer/metabolismo , Bromodesoxiuridina , Proteína Quinasa Tipo 2 Dependiente de Calcio Calmodulina/metabolismo , Hipocampo/metabolismo , Modelos Animales de Enfermedad , Neurogénesis , Giro Dentado/metabolismo
2.
J Stroke Cerebrovasc Dis ; 32(9): 107231, 2023 Sep.
Artículo en Inglés | MEDLINE | ID: mdl-37473532

RESUMEN

BACKGROUND: Accumulated evidence has proven that both acupuncture and rehabilitation therapy are beneficial for stroke sequelae. However, there is no systematic review to identify the efficacy and safety of acupuncture combined with rehabilitation training for poststroke cognitive impairment (PSCI). Therefore, the aim of this study was to assess the efficacy and safety of acupuncture combined with rehabilitation therapy for patients with PSCI. METHODS: We searched nine databases, including PubMed, Embase, Scopus, Web of Science, EBSCO, Cochrane Library, China National Knowledge Infrastructure (CNKI), China Science and Technology Journal Database (VIP), and Wan Fang, from their inception to September 2022. Randomized controlled trials (RCTs) examining the effect of acupuncture combined with rehabilitation on PSCI were included. The primary outcomes were the Mini-Mental State Examination (MMSE) score, Montreal Cognitive Assessment (MoCA) score, Modified Barthel Index (MBI) score, and Fugl-Meyer Assessment (FMA) score. The quality of the methodology was evaluated by Cochrane's risk of bias tool. Meta-analyses were performed by Revman 5.3 software. RESULTS: A total of 18 RCTs involving 1654 patients were included. The overall methodological quality of the included studies was low. Pooled results demonstrated that acupuncture combined with rehabilitation could significantly improve the clinical efficacy of PSCI (OR=3.23, 95% CI: 2.13 to 4.89), MMSE score (MD= 2.85, 95% CI: 2.56 to 3.15), MoCA score (MD= 2.18, 95% CI: 1.38 to 2.97), MBI score (MD= 9.23, 95% CI: 5.62 to 12.84), and FMA score (MD=5.72, 95% CI: 3.48 to 7.96). CONCLUSIONS: Acupuncture combined with rehabilitation may produce better outcomes than rehabilitation alone in the treatment of PSCI. However, the safety of combined interventions is still unclear. Therefore, research with more rigorous study designs and RCTs with larger sample sizes is still needed.


Asunto(s)
Terapia por Acupuntura , Disfunción Cognitiva , Accidente Cerebrovascular , Humanos , Terapia por Acupuntura/efectos adversos , Terapia por Acupuntura/métodos , Accidente Cerebrovascular/complicaciones , Accidente Cerebrovascular/diagnóstico , Accidente Cerebrovascular/terapia , Resultado del Tratamiento , Disfunción Cognitiva/diagnóstico , Disfunción Cognitiva/etiología , Disfunción Cognitiva/terapia , Proyectos de Investigación
3.
Biol Res ; 56(1): 36, 2023 Jun 30.
Artículo en Inglés | MEDLINE | ID: mdl-37391839

RESUMEN

BACKGROUND: Electroacupuncture (EA) is a complementary and alternative therapy which has shown protective effects on vascular cognitive impairment (VCI). However, the underlying mechanisms are not entirely understood. METHODS: Rat models of VCI were established with cerebral ischemia using occlusion of the middle cerebral artery or bilateral common carotid artery. The brain structure and function imaging were measured through animal MRI. miRNA expression was detected by chip and qPCR. Synaptic functional plasticity was detected using electrophysiological techniques. RESULTS: This study demonstrated the enhancement of Regional Homogeneity (ReHo) activity of blood oxygen level-dependent (BOLD) signal in the entorhinal cortical (EC) and hippocampus (HIP) in response to EA treatment. miR-219a was selected and confirmed to be elevated in HIP and EC in VCI but decreased after EA. N-methyl-D-aspartic acid receptor1 (NMDAR1) was identified as the target gene of miR-219a. miR-219a regulated NMDAR-mediated autaptic currents, spontaneous excitatory postsynaptic currents (sEPSC), and long-term potentiation (LTP) of the EC-HIP CA1 circuit influencing synaptic plasticity. EA was able to inhibit miR-219a, enhancing synaptic plasticity of the EC-HIP CA1 circuit and increasing expression of NMDAR1 while promoting the phosphorylation of downstream calcium/calmodulin-dependent protein kinase II (CaMKII), improving overall learning and memory in VCI rat models. CONCLUSION: Inhibition of miR-219a ameliorates VCI by regulating NMDAR-mediated synaptic plasticity in animal models of cerebral ischemia.


Asunto(s)
Isquemia Encefálica , Electroacupuntura , Animales , Ratas , Encéfalo , Fosforilación , Hipocampo
4.
Exp Neurol ; 360: 114289, 2023 02.
Artículo en Inglés | MEDLINE | ID: mdl-36471512

RESUMEN

BACKGROUND: Based on the theory of interhemispheric inhibition and the bimodal balance-recovery model in stroke, we explored the effects of excitation/inhibition (E/I) of parvalbumin (PV) neurons in the contralateral primary motor cortex (cM1) connecting the ipsilateral M1 (iM1) via the corpus callosum (cM1-CC-iM1) of ischemic stroke rats by optogenetic stimulation. METHODS: We tested this by injecting anterograde and retrograde virus in rats with middle cerebral artery occlusion (MCAO), and evaluated the neurological scores, motor behavior, volume of cerebral infarction and the E/I balance of the bilateral M1 two weeks after employing optogenetic treatment. RESULTS: We found that concentrations of Glu and GABA decreased and increased, respectively, in the iM1 of MCAO rats, and that the former increased in the cM1, suggesting E/I imbalance in bilateral M1 after ischemic stroke. Interestingly, optogenetic stimulation improved M1 E/I imbalance, as illustrated by the increase of Glu in the iM1 and the decrease of GABA in both iM1 and cM1, which were accompanied by an improvement in neurological deficit and motor dysfunction. In addition, we observed a reduced infarct volume, an increase in the expression of the NMDAR and AMPAR, and a decrease in GAD67 in the iM1 after intervention. CONCLUSIONS: Optogenetic modulation of PV neurons of the iM1-CC-cM1 improve E/I balance, leading to reduced neurological deficit and improved motor dysfunction following ischemic stroke in rats.


Asunto(s)
Accidente Cerebrovascular Isquémico , Corteza Motora , Rehabilitación de Accidente Cerebrovascular , Accidente Cerebrovascular , Humanos , Ratas , Animales , Parvalbúminas , Optogenética , Infarto de la Arteria Cerebral Media , Neuronas , Ácido gamma-Aminobutírico
5.
Mediators Inflamm ; 2022: 5985143, 2022.
Artículo en Inglés | MEDLINE | ID: mdl-35784174

RESUMEN

Studies have shown that electroacupuncture (EA) can effectively improve vascular cognitive impairment (VCI), but its mechanisms have not been clearly elucidated. This study is aimed at investigating the mechanisms underlying the effects of EA treatment on hippocampal synaptic transmission efficiency and plasticity in rats with VCI. Methods. Sprague-Dawley rats were subjected to VCI with bilateral common carotid occlusion (2VO). EA stimulation was applied to Baihui (GV20) and Shenting (GV24) acupoints for 30 min once a day, five times a week, for four weeks. Our study also included nonacupoint groups to confirm the specificity of EA therapy. The Morris water maze (MWM) was used to assess cognitive function. Electrophysiological techniques were used to detect the field characteristics of the hippocampal CA3-CA1 circuit in each group of rats, including input-output (I/O), paired-pulse facilitation ratios (PPR), field excitatory postsynaptic potential (fEPSP), and excitatory postsynaptic current (EPSC). The expression of synapse- and calcium-mediated signal transduction associated proteins was detected through western blotting. Results. The MWM behavioural results showed that EA significantly improved cognitive function in VCI model rats. EA increased the I/O curve of VCI model rats from 20 to 90 µA. No significant differences were observed in hippocampal PPR. The fEPSP of the hippocampal CA3-CA1 circuit was significantly increased after EA treatment compared with that after nonacupuncture treatment. We found that EA led to an increase in the EPSC amplitude and frequency, especially in the decay and rise times. In addition, the protein expression and phosphorylation levels of N-methyl-D-aspartate receptor 2B, α-amino-3-hydroxy-5-methyl-4-isoxazole propionate receptor 1, and Ca2+-calmodulin-dependent protein kinase II increased to varying degrees in the hippocampus of VCI model rats. Conclusion. EA at GV20 and GV24 acupoints increased the basic synaptic transmission efficiency and synaptic plasticity of the hippocampal CA3-CA1 circuit, thereby improving learning and memory ability in rats with VCI.


Asunto(s)
Disfunción Cognitiva , Electroacupuntura , Animales , Disfunción Cognitiva/terapia , Electroacupuntura/métodos , Hipocampo/metabolismo , Ratas , Ratas Sprague-Dawley , Transmisión Sináptica
6.
Front Aging Neurosci ; 13: 770948, 2021.
Artículo en Inglés | MEDLINE | ID: mdl-35185516

RESUMEN

OBJECTIVES: To explore the effect of electro-acupuncture (EA) treatment on pattern separation and investigate the neural circuit mechanism involved in five familial mutations (5 × FAD) mice. METHODS: Five familial mutations mice were treated with EA at Baihui (DU20) and Shenting (DU24) acupoints for 30 min each, lasting for 4 weeks. Cognitive-behavioral tests were performed to evaluate the effects of EA treatment on cognitive functions. 1H-MRS, Nissl staining, immunohistochemistry, and immunofluorescence were performed to examine the cholinergic system alteration. Thioflavin S staining and 6E10 immunofluorescence were performed to detect the amyloid-ß (Aß). Furthermore, hM4Di designer receptors exclusively activated by designer drugs (DREADDs) virus and long-term clozapine-N-oxide injection were used to inhibit the medial septal and vertical limb of the diagonal band and dentate gyrus (MS/VDB-DG) cholinergic neural circuit. Cognitive-behavioral tests and immunofluorescence were performed to investigate the cholinergic neural circuit mechanism of EA treatment improving cognition in 5 × FAD mice. RESULTS: Electro-acupuncture treatment significantly improved spatial recognition memory and pattern separation impairment, regulated cholinergic system via reduction neuron loss, upregulation of choline/creatine, choline acetyltransferase, vesicular acetylcholine transporter, and downregulation of enzyme acetylcholinesterase in 5 × FAD mice. Aß deposition was reduced after EA treatment. Subsequently, the monosynaptic hM4Di DREADDs virus tracing and inhibiting strategy showed that EA treatment activates the MS/VDB-DG cholinergic neural circuit to improve the early pattern separation. In addition, EA treatment activates this circuit to upregulating M1 receptors positive cells and promoting hippocampal neurogenesis in the dentate gyrus (DG). CONCLUSION: Electro-acupuncture could improve the early pattern separation impairment by activating the MS/VDB-DG cholinergic neural circuit in 5 × FAD mice, which was related to the regulation of the cholinergic system and the promotion of neurogenesis by EA treatment.

SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA