Your browser doesn't support javascript.
loading
Mostrar: 20 | 50 | 100
Resultados 1 - 20 de 79
Filtrar
Más filtros

Medicinas Complementárias
Bases de datos
País/Región como asunto
Tipo del documento
País de afiliación
Intervalo de año de publicación
1.
J Ethnopharmacol ; 326: 117910, 2024 May 23.
Artículo en Inglés | MEDLINE | ID: mdl-38373664

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: For centuries, Shaoyao-Gancao-Fuzi decoction (SGFD) has been a reliable traditional Chinese medicine for treating rheumatoid arthritis (RA). Despite its long history of use, the specific active components and underlying mechanisms of its therapeutic effects have yet to be fully understood. AIM OF THE STUDY: The aim of this study was to investigate the active ingredients and therapeutic effects of SGFD on RA, and to further understand its underlying mechanism. MATERIALS AND METHODS: The chemical constituents in SGFD extract and in rat serum after oral administration of SGFD were identified and evaluated using ultra-performance liquid chromatography quadrupole-time-flight mass spectrometry (UPLC-Q-TOF/MS) together with various data-processing methods, respectively. The efficacy of SGFD was assessed by using an adjuvant-induced arthritis (AIA) rat model and lipopolysaccharide-stimulated RAW 264.7 cell. Subsequently, cell metabolomic was conducted to clarify the potential biomarkers and pathways. ELISA, RT-qPCR, and WB were used to verify the anti-arthritis mechanism of SGFD. RESULTS: A total of 65 chemical constituents were identified in SGFD. 17 active components were distinguished in rat serum samples, of which 13 may be the main active ingredients for SGFD treatment of RA. The remarkable efficacy of SGFD in reducing the symptoms of RA is evident through its ability to alleviate the redness and swelling of the affected paws, as well as reduce the infiltration of inflammatory cells. Cell experiments revealed that rat serum of SGFD reduced IL-1ß, IL-6, and TNF-α secretion in RAW 264.7 cells. 27 potential biomarkers were identified through cell metabolomics analysis. The arachidonic acid (AA) metabolism signaling pathway was activated in RA, which could be reversed by rat serum of SGFD. SGFD effectively inhibited the expression and transformation of AA by downregulating the expression of key enzymes, including phospholipase A and cyclooxygenase. CONCLUSION: SGFD may ameliorate RA symptoms by regulating the AA-PGH2-PGE2/PGF2α pathway. The main active components include songorine, fuziline, neoline, albiflorin, paeoniflorin, liquiritin, benzoylmesaconine, isoformononetin, liquiritigenin, isoliquiritigenin, formononetin, glycyrrhizic acid, and glycyrrhetinic acid.


Asunto(s)
Artritis Reumatoide , Diterpenos , Medicamentos Herbarios Chinos , Glycyrrhiza , Ratas , Animales , Cromatografía Líquida de Alta Presión/métodos , Medicamentos Herbarios Chinos/farmacología , Medicamentos Herbarios Chinos/uso terapéutico , Medicamentos Herbarios Chinos/química , Metabolómica/métodos , Artritis Reumatoide/tratamiento farmacológico , Artritis Reumatoide/metabolismo , Biomarcadores
2.
Zhongguo Zhong Yao Za Zhi ; 48(18): 4902-4907, 2023 Sep.
Artículo en Chino | MEDLINE | ID: mdl-37802832

RESUMEN

Malaria, one of the major global public health events, is a leading cause of mortality and morbidity among children and adults in tropical and subtropical regions(mainly in sub-Saharan Africa), threatening human health. It is well known that malaria can cause various complications including anemia, blackwater fever, cerebral malaria, and kidney damage. Conventionally, cardiac involvement has not been listed as a common reason affecting morbidity and mortality of malaria, which may be related to ignored cases or insufficient diagnosis. However, the serious clinical consequences such as acute coronary syndrome, heart failure, and malignant arrhythmia caused by malaria have aroused great concern. At present, antimalarials are commonly used for treating malaria in clinical practice. However, inappropriate medication can increase the risk of cardiovascular diseases and cause severe consequences. This review summarized the research advances in the cardiovascular complications including acute myocardial infarction, arrhythmia, hypertension, heart failure, and myocarditis in malaria. The possible mechanisms of cardiovascular diseases caused by malaria were systematically expounded from the hypotheses of cell adhesion, inflammation and cytokines, myocardial apoptosis induced by plasmodium toxin, cardiac injury secondary to acute renal failure, and thrombosis. Furthermore, the effects of quinolines, nucleoprotein synthesis inhibitors, and artemisinin and its derivatives on cardiac structure and function were summarized. Compared with the cardiac toxicity of quinolines in antimalarial therapy, the adverse effects of artemisinin-derived drugs on heart have not been reported in clinical studies. More importantly, the artemisinin-derived drugs demonstrate favorable application prospects in the prevention and treatment of cardiovascular diseases, and are expected to play a role in the treatment of malaria patients with cardiovascular diseases. This review provides reference for the prevention and treatment of malaria-related cardiovascular complications as well as the safe application of antimalarials.


Asunto(s)
Antimaláricos , Artemisininas , Enfermedades Cardiovasculares , Insuficiencia Cardíaca , Malaria Cerebral , Quinolinas , Niño , Adulto , Humanos , Antimaláricos/farmacología , Enfermedades Cardiovasculares/tratamiento farmacológico , Artemisininas/farmacología , Malaria Cerebral/tratamiento farmacológico , Insuficiencia Cardíaca/tratamiento farmacológico , Arritmias Cardíacas/tratamiento farmacológico
3.
Phytomedicine ; 119: 154985, 2023 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-37516090

RESUMEN

BACKGROUND: Mume Fructus (MF) is the fruit of Prunus mume Sieb. et Zucc, a plant of Rosaceae family. Previous studies demonstrated that MF was capable of ameliorating ulcerative colitis (UC) in mice, its action mechanism needs to be clarified. PURPOSE: This study deciphered whether and how MF extract accelerates colonic mucosal healing, the therapeutic endpoint of UC. METHODS: Biochemical, histopathological and qRT-PCR analyses were utilized to define the therapeutic efficacy of MF on dextran sulfate sodium (DSS)-induced colitis in mice. UHPLC-QTOF-MS/MS-based metabolomics technique was adopted to explore the changes of endogenous metabolites associated with UC and responses to MF intervention. qRT-PCR analysis was performed to confirm the molecular pathway in vivo. The effects of MF and lysophosphatidylcholine (LPC) on cell viability, wound healing, proliferation, and migration were examined through a series of in vitro experiments. Moreover, the effects of different subtypes of phospholipase A2 (PLA2) inhibitors on MF-treated colonic epithelial cells were detected by wound healing test and transwell assay. RESULTS: Orally administered MF could alleviate colitis in mice mainly by accelerating the healing of colonic mucosa. Guided by an unbiased metabolomics screen, we identified LPC synthesis as a major modifying pathway in colitis mice after MF treatment. Notably, MF facilitated the synthesis of LPC by enhancing the expression of PLA2 in colitis mice. Mechanistically, MF and LPC accelerated wound closure by promoting cell migration. Moreover, the promotion of MF on wound healing and migration of colonic epithelial cells was blunted by a cytosolic phospholipase A2 (cPLA2) inhibitor. CONCLUSION: MF can facilitate colonic mucosal healing of mice with colitis through cPLA2-mediated intestinal LPC synthesis, which may become a novel therapeutic agent of UC.


Asunto(s)
Colitis Ulcerosa , Colitis , Prunus , Ratones , Animales , Sulfato de Dextran/efectos adversos , Lisofosfatidilcolinas/metabolismo , Prunus/química , Frutas/química , Espectrometría de Masas en Tándem , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Colitis/metabolismo , Colon/patología , Colitis Ulcerosa/tratamiento farmacológico , Cicatrización de Heridas , Mucosa Intestinal/metabolismo , Fosfolipasas A2 Citosólicas/análisis , Fosfolipasas A2 Citosólicas/metabolismo , Fosfolipasas A2 Citosólicas/farmacología , Modelos Animales de Enfermedad , Ratones Endogámicos C57BL
4.
Phytomedicine ; 116: 154874, 2023 Jul 25.
Artículo en Inglés | MEDLINE | ID: mdl-37216760

RESUMEN

BACKGROUND: 3, 3'-diindolylmethane (DIM), a classical aryl hydrocarbon receptor (AhR) agonist, has been shown to relieve neuropathic pain, but few studies have reported the efficacy of DIM in visceral pain under colitis condition. PURPOSE: This study aimed to investigate the effect and mechanism of DIM on visceral pain under colitis condition. METHODS: Cytotoxicity was performed using the MTT assay. RT-qPCR and ELISA assays were applied to determine the expression and release of algogenic substance P (SP), nerve growth factor (NGF) and brain-derived neurotrophic factor (BDNF). Flow cytometry was used to examine the apoptosis and efferocytosis. The expression of Arg-1-arginine metabolism-related enzymes was detected using western blotting assays. ChIP assays were used to examine the binding of Nrf2 to Arg-1. Mouse models of dextran sulfate sodium (DSS) were established to illustrate the effect of DIM and validate the mechanism in vivo. RESULTS: DIM did not directly affect expressions and release of algogenic SP, NGF and BDNF in enteric glial cells (EGCs). However, when co-cultured with DIM-pre-treated RAW264.7 cells, the release of SP and NGF was decreased in lipopolysaccharides-stimulated EGCs. Furthermore, DIM increased the number of PKH67+ F4/80+ cells in the co-culture system of EGCs and RAW264.7 cells in vitro and alleviated visceral pain under colitis condition by regulating levels of SP and NGF as well as values of electromyogram (EMG), abdominal withdrawal reflex (AWR) and tail-flick latency (TFL) in vivo, which was significantly inhibited by efferocytosis inhibitor. Subsequently, DIM was found to down-regulate levels of intracellular arginine, up-regulate levels of ornithine, putrescine and Arg-1 but not extracellular arginine or other metabolic enzymes, and polyamine scavengers reversed the effect of DIM on efferocytosis and release of SP and NGF. Moving forward, Nrf2 transcription and the binding of Nrf2 to Arg-1-0.7 kb was enhanced by DIM, AhR antagonist CH223191 abolished the promotion of DIM on Arg-1 and efferocytosis. Finally, nor-NOHA validated the importance of Arg-1-dependent arginine metabolism in DIM-alleviated visceral pain. CONCLUSION: DIM enhances macrophage efferocytosis in an arginine metabolism-dependent manner via "AhR-Nrf2/Arg-1" signals and inhibits the release of SP and NGF to relieve visceral pain under colitis condition. These findings provide a potential therapeutic strategy for the treatment of visceral pain in patients with colitis.


Asunto(s)
Colitis , Dolor Visceral , Ratones , Animales , Receptores de Hidrocarburo de Aril/metabolismo , Factor 2 Relacionado con NF-E2 , Factor Neurotrófico Derivado del Encéfalo , Dolor Visceral/tratamiento farmacológico , Factor de Crecimiento Nervioso , Macrófagos/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico
5.
Mol Nutr Food Res ; 67(12): e2200784, 2023 Jun.
Artículo en Inglés | MEDLINE | ID: mdl-36938915

RESUMEN

SCOPE: Colonic mucosal healing is the terminal goal for the treatment of ulcerative colitis (UC), but there is currently no specific drug available. This study investigates the beneficial effect of diallyl trisulfide (DATS) on the colonic mucosal healing. METHODS AND RESULTS: Dextran sulfate sodium (DSS) is used to induce colitis in female C57BL/6 mice, and DATS is orally administered during the recovery period. DATS hardly impacts the inflammation of the colonic tissues, but significantly promotes the mucosal repair. DATS promotes the migration but not proliferation of colonic epithelial cells in the colitis mice. In addition, DATS accelerates the wound healing, cell migration, focal adhesion assembly, and phosphorylation of focal adhesion kinase (FAK) of colonic epithelial cells in vitro, which are evidently reversed by combined use of FAK inhibitor PF-573228. Similar results are shown in colitis mice. Mechanically, DATS promotes the binding of Rab21 to integrin ß1 and accelerates the endocytosis of integrin ß1, which is significantly attenuated by the knockdown of Rab21. CONCLUSIONS: DATS promotes the binding of Rab21 to integrin ß1 and the endocytosis of integrin ß1, thereby increases FAK phosphorylation and focal adhesion assembly, finally accelerates the migration of colonic epithelial cells and mucosal healing.


Asunto(s)
Colitis Ulcerosa , Colitis , Ajo , Femenino , Ratones , Animales , Integrina beta1/metabolismo , Integrina beta1/farmacología , Colitis Ulcerosa/inducido químicamente , Colitis Ulcerosa/tratamiento farmacológico , Adhesiones Focales , Ratones Endogámicos C57BL , Movimiento Celular , Proteína-Tirosina Quinasas de Adhesión Focal/metabolismo , Colitis/inducido químicamente , Colitis/tratamiento farmacológico , Células Epiteliales/metabolismo
6.
Nutrients ; 14(19)2022 Oct 03.
Artículo en Inglés | MEDLINE | ID: mdl-36235763

RESUMEN

The aim of this study was to examine the association between dietary patterns and high blood glucose in Jiangsu province of China by using structural equation modelling (SEqM). Methods: Participants in this cross-sectional study were recruited through the 2015 Chinese Adult Chronic Disease and Nutrition Surveillance Program in Jiangsu province using a multistage stratified cluster random sampling method. Dietary patterns were defined by exploratory factor analysis (EFA). Confirmatory factor analysis (CFA) was used to test the fitness of EFA. SEqM was used to investigate the association between dietary patterns and high blood glucose. Results: After exclusion, 3137 participants with complete information were analysed for this study. The prevalence of high blood glucose was 9.3% and 8.1% in males and females, respectively. Two dietary patterns: the modern dietary pattern (i.e., high in red meats and its products, vegetables, seafood, condiments, fungi and algae, main grains and poultry; low in other grains, tubers and preserves), and the fruit−milk dietary pattern (i.e., high in milk and its products, fruits, eggs, nuts and seeds and pastry snacks, but low in vegetable oils) were established. Modern dietary pattern was found to be positively associated with high blood glucose in adults in Jiangsu province (multivariate logistic regression: OR = 1.561, 95% CI: 1.025~2.379; SEqM: ß = 0.127, p < 0.05). Conclusion: The modern dietary pattern­high intake of red meats­was significantly associated with high blood glucose among adults in Jiangsu province of China, while the fruit−milk dietary pattern was not significantly associated with high blood glucose.


Asunto(s)
Glucemia , Hiperglucemia , Adulto , China/epidemiología , Estudios Transversales , Dieta , Femenino , Humanos , Análisis de Clases Latentes , Masculino , Aceites de Plantas , Verduras
7.
J Ethnopharmacol ; 295: 115437, 2022 Sep 15.
Artículo en Inglés | MEDLINE | ID: mdl-35667582

RESUMEN

ETHNOPHARMACOLOGY RELEVANCE: Shaoyao-Gancao-Fuzi decoction (SGFD), a well-known traditional Chinese medicine formula, was originally described in "Treatise on Febrile Diseases" and has been extensively used to dispel wind, eliminate dampness and treat paralysis. It is widely used for the treatment of rheumatoid arthritis in clinic. However, the effect of SGFD on the activity of cytochrome P450 enzymes (CYP450s) and the herb-drug interactions are rarely studied. OBJECTIVE: The aim of this study was to investigate the effect of SGFD on the activity of CYP450s and evaluate the potential herb-drug interactions between SGFD and tofacitinib, commonly used disease-modifying antirheumatic drug in rheumatoid arthritis. MATERIALS AND METHODS: The cocktail approach was employed to assess the effect of SGFD on the activity of CYP1A2, 3A4, 2A6, 2E1, and 2C9. The pharmacokinetic profile of oral administration of tofacitinib in rats after two weeks of treatment with SGFD was investigated. RT-qPCR and molecular docking were performed to unveil the underlying mechanism of the herb-drug interaction. RESULTS: SGFD had no effect on the activities of CYP2E1 and 2C9, had a weak effect on CYP2A6, and had activatory effect on CYP1A2. However, it had a dramatically inhibitory effect on the activity of CYP3A4. Simultaneously, the values of Cmax and AUC0-∞ of tofacitinib were obviously increased after treatment with SGFD for 14 days. The mechanism study manifested that SGFD significantly reduced the gene transcription of CYP3A. Molecular docking work confirmed that the inhibitory activity of glycyrrhetinic acid, glycyrrhizic acid and liquiritin, the main ingredients of SGFD, occurred by occupying the active sites of CYP3A4 and by making favorable interactions with its key residues. CONCLUSIONS: The system exposure of tofacitinib was increased by SGFD. SGFD could affect the activity and gene expression of the key metabolic enzyme CYP3A. These findings give a clear understanding to predict herb-drug interaction of SGFD for safe clinical use in future.


Asunto(s)
Artritis Reumatoide , Interacciones de Hierba-Droga , Animales , Citocromo P-450 CYP1A2 , Citocromo P-450 CYP3A/genética , Citocromo P-450 CYP3A/metabolismo , Sistema Enzimático del Citocromo P-450/genética , Sistema Enzimático del Citocromo P-450/metabolismo , Diterpenos , Medicamentos Herbarios Chinos , Glycyrrhiza , Simulación del Acoplamiento Molecular , Piperidinas , Pirimidinas , Ratas
8.
Phytother Res ; 36(8): 3248-3264, 2022 Aug.
Artículo en Inglés | MEDLINE | ID: mdl-35599350

RESUMEN

Intestinal mucus barrier dysfunction is closely involved in the pathogenesis of inflammatory bowel diseases (IBD). To investigate the protective effect and underlying mechanism of arctigenin, a phytoestrogen isolated from the fruits of Arctium lappa L., on the intestinal mucus barrier under colitis condition. The role of arctigenin on the intestinal mucus barrier and the apoptosis of goblet cells were examined by using both in vitro and in vivo assays. Arctigenin was demonstrated to promote the mucus secretion and maintain the integrity of mucus barrier, which might be achieved by an increase in the number of goblet cells via inhibiting apoptosis. Arctigenin selectively inhibited the mitochondrial pathway-mediated apoptosis. Moreover, arctigenin elevated the protein level of prohibitin 1 (PHB1) through blocking the ubiquitination via activation of estrogen receptor ß (ERß) to competitively interact with PHB1 and disrupt the binding of tripartite motif 21 (TRIM21) with PHB1. ERß knock down in the colons of mice with DSS-induced colitis resulted in significant reduction of the protection of arctigenin and DPN against the mucosal barrier. Arctigenin can maintain the integrity of the mucus barrier by inhibiting the apoptosis of goblet cells through the ERß/TRIM21/PHB1 pathway.


Asunto(s)
Colitis , Enfermedades Inflamatorias del Intestino , Animales , Apoptosis , Colitis/inducido químicamente , Receptor beta de Estrógeno/metabolismo , Furanos , Células Caliciformes/metabolismo , Células Caliciformes/patología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/patología , Lignanos , Ratones , Ratones Endogámicos C57BL , Moco/metabolismo , Fitoestrógenos , Prohibitinas
9.
Xenobiotica ; 51(10): 1181-1187, 2021 Oct.
Artículo en Inglés | MEDLINE | ID: mdl-34514945

RESUMEN

1. Morin, a natural flavonol, is present in many plants. It has anti-inflammatory and immunomodulatory activities and is often used as an adjuvant treatment for arthritis. Diclofenac sodium is the first-choice drug in the treatment of rheumatoid arthritis. However, the herb-drug interaction (HDI) between morin and diclofenac sodium remains unclear.2. The aim of the present research was to investigate whether and how morin affect the pharmacokinetic profile of diclofenac sodium.3. The enzyme kinetic and pharmacokinetic studies showed that morin significantly accelerated the metabolism and reduced systemic exposure of diclofenac sodium. Interestingly, the effect of morin on the pharmacokinetic profile of diclofenac sodium was not in a dose-dependent manner. Therefore, the effect of morin on P-glycoprotein (P-gp) was further investigated.4. The results implied that the influence mechanism of morin on the pharmacokinetic of diclofenac sodium might be related to CYP2C9 and P-gp. Attention should be paid to the risk of HDI between morin and diclofenac sodium in clinical practice.


Asunto(s)
Diclofenaco , Flavonoides , Miembro 1 de la Subfamilia B de Casetes de Unión a ATP , Animales , Antiinflamatorios no Esteroideos , Interacciones de Hierba-Droga , Ratas
10.
J Ethnopharmacol ; 271: 113855, 2021 May 10.
Artículo en Inglés | MEDLINE | ID: mdl-33485979

RESUMEN

ETHNOPHARMACOLOGICAL RELEVANCE: Scutellarin (Scu) is one of the main active ingredients of Erigeron breviscapus (Vant.) Hand.-Mazz which has been used to treat cardiovascular disease including vascular dysfunction caused by diabetes. Scu also has a protective effect on vascular endothelial cells against hyperglycemia. However, molecular mechanisms underlying this effect are not clear. AIM OF THE STUDY: This aim of this study was to investigate the effect of Scu on human umbilical vein endothelial cells (HUVECs) injury induced by high glucose (HG), especially the regulation of PTEN-induced kinase 1 (PINK1)/Parkin-mediated mitophagy. MATERIALS AND METHODS: HUVECs were exposed to HG to induce vascular endothelial cells injury in vitro. Cell viability was assessed by MTT assay. The extent of cell apoptosis was measured by Hoechst staining and flow cytometry. Mitophagy was assayed by fluorescent immunostaining, transmission electron microscope and immunoblot. Besides, virtual docking was conducted to validate the interaction of PINK1 protein and Scu. RESULTS: We found that Scu significantly increased cell viability in HG-treated HUVECs. Scu reduces the expression of Bcl-2, Bax and cytochrome C (Cyt.c) to inhibit apoptosis through a mitochondria-dependent pathway. Meanwhile, Scu improved the overload of reactive oxygen species (ROS), superoxide dismutase (SOD) activity and SOD2 protein expression, and reversed the collapse of mitochondrial membrane potential. Besides, Scu increased autophagic flux, improved the expression of microtubule-associated protein 1 light chain 3 Ⅱ (LC3 II), Beclin 1 and autophagy-related gene 5 (Atg 5) and decreased the expression of Sequestosome1/P62 in HG-treated HUVECs. Furthermore, Scu improved the expressions of PINK1, Parkin, and Mitofusin2, which revealed the enhancement of mitophagy. Moreover, the beneficial effects of Scu on HG-induced low expression of Parkin, overproduction of ROS, and over expressions of P62, Cyt.c and Cleaved caspase-3 were weakened by PINK1 gene knockdown. Molecular docking suggested good interaction of Scu and PINK1 protein. CONCLUSION: These results suggest that Scu may protect vascular endothelial cells against hyperglycemia-induced injury by up-regulating mitophagy via PINK1/Parkin signal pathway.


Asunto(s)
Apigenina/farmacología , Glucuronatos/farmacología , Células Endoteliales de la Vena Umbilical Humana/metabolismo , Mitofagia/efectos de los fármacos , Proteínas Quinasas/metabolismo , Ubiquitina-Proteína Ligasas/metabolismo , Apigenina/química , Apoptosis/efectos de los fármacos , Supervivencia Celular/efectos de los fármacos , Células Cultivadas , Angiopatías Diabéticas/tratamiento farmacológico , Angiopatías Diabéticas/metabolismo , Silenciador del Gen , Glucosa/toxicidad , Glucuronatos/química , Células Endoteliales de la Vena Umbilical Humana/efectos de los fármacos , Humanos , Hiperglucemia/inducido químicamente , Hiperglucemia/complicaciones , Potencial de la Membrana Mitocondrial/efectos de los fármacos , Mitocondrias/efectos de los fármacos , Mitofagia/genética , Simulación del Acoplamiento Molecular , Estrés Oxidativo/efectos de los fármacos , Proteínas Quinasas/química , Proteínas Quinasas/genética , Especies Reactivas de Oxígeno/metabolismo , Transducción de Señal/efectos de los fármacos , Regulación hacia Arriba/efectos de los fármacos
11.
Zhongguo Zhong Yao Za Zhi ; 46(24): 6410-6416, 2021 Dec.
Artículo en Chino | MEDLINE | ID: mdl-34994133

RESUMEN

This study was designed to investigate the flavor and taste change rules of Sophora Flavescentis Radix processed using the ancient classical method documented in Master Lei's Discourse on Medicinal Processing(Lei Gong Pao Zhi Lun). The Sophora Flavescentis Radix pieces and the corresponding test samples in each processing stage were first prepared based on the processing method for Sophora Flavescentis Radix recorded in Master Lei's Discourse on Medicinal Processing(Lei Gong Pao Zhi Lun). Then the flavors and tastes of Sophora Flavescentis Radix test samples undergoing the soaking in rice-washed water, washing with clean water, and steaming for different time were compared with the electronic nose and tongue. The results showed that in the preparation of Sophora Flavescentis Radix with the ancient method, such processes as soaking in rice-washed water and washing with clean water had no significant influences on the flavor, which, however, was weakened by steaming. In terms of the taste, soaking with rice-washed water enhanced the bitter taste of Sophora Flavescentis Radix, which remained unchanged after being washed with the clean water. The steaming would also diminish the bitter taste, making it taste similar to the original Sophora Flavescentis Radix medicinal materials. During the steaming for six to eight hours, the flavor did not vary significantly over time, while the bitter taste was first weakened and then intensified. The bitter taste of Sophora Flavescentis Radix steamed for six hours was similar to that steamed for eight hours. In addition, the differences in flavor and taste between Sophora Flavescentis Radix pieces processed by the ancient method in Master Lei's Discourse on Medicinal Processing(Lei Gong Pao Zhi Lun)and those by the modern method in the 2020 edition of Chinese Pharmacopoeia were analyzed. The findings demonstrated that the flavor of Sophora Flavescentis Radix pieces prepared by the ancient method was weaker than that by the modern method, whereas the bitter taste showed the opposite trend. The exploration on the flavor and taste change rules of Sophora Flavescentis Radix in its preparation by the ancient classical method and the differences in flavor and taste between Sophora Flavescentis Radix decoction pieces prepared by ancient and modern methods will lay a foundation for further elucidation of the scientific connotation of the ancient processing method and the medication principles of Sophora Flavescentis Radix in both ancient and modern times.


Asunto(s)
Medicamentos Herbarios Chinos , Sophora , Nariz Electrónica , Raíces de Plantas , Gusto
12.
Acta Pharmacol Sin ; 42(3): 422-435, 2021 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-32694760

RESUMEN

Oral administration of curcumin has been shown to inhibit pulmonary fibrosis (PF) despite its extremely low bioavailability. In this study, we investigated the mechanisms underlying the anti-PF effect of curcumin in focus on intestinal endocrine. In bleomycin- and SiO2-treated mice, curcumin (75, 150 mg· kg-1 per day) exerted dose-dependent anti-PF effect when administered orally or rectally but not intravenously, implying an intestinal route was involved in the action of curcumin. We speculated that curcumin might promote the generation of gut-derived factors and the latter acted as a mediator subsequently entering the lungs to ameliorate fibrosis. We showed that oral administration of curcumin indeed significantly increased the expression of gut-derived hepatocyte growth factor (HGF) in colon tissues. Furthermore, in bleomycin-treated mice, the upregulated protein level of HGF in lungs by oral curcumin was highly correlated with its anti-PF effect, which was further confirmed by coadministration of c-Met inhibitor SU11274. Curcumin (5-40 µM) dose-dependently increased HGF expression in primary mouse fibroblasts, macrophages, CCD-18Co cells (fibroblast cell line), and RAW264.7 cells (monocyte-macrophage cell line), but not in primary colonic epithelial cells. In CCD-18Co cells and RAW264.7 cells, curcumin dose-dependently activated PPARγ and CREB, whereas PPARγ antagonist GW9662 (1 µM) or cAMP response element (CREB) inhibitor KG-501 (10 µM) significantly decreased the boosting effect of curcumin on HGF expression. Finally, we revealed that curcumin dose-dependently increased the production of 15-deoxy-Δ12, 14-prostaglandin J2 (15d-PGJ2) in CCD-18Co cells and RAW264.7 cells, which was a common upstream of the two transcription factors. Moreover, both the in vitro and in vivo effects of curcumin were diminished by coadministration of HPGDS-inhibitor-1, an inhibitor of 15d-PGJ2 generation. Together, curcumin promotes the expression of HGF in colonic fibroblasts and macrophages by activating PPARγ and CREB via an induction of 15d-PGJ2, and the HGF enters the lungs giving rise to an anti-PF effect.


Asunto(s)
Colon/efectos de los fármacos , Curcumina/uso terapéutico , Factor de Crecimiento de Hepatocito/metabolismo , Prostaglandina D2/análogos & derivados , Fibrosis Pulmonar/tratamiento farmacológico , Administración Oral , Animales , Colon/citología , Colon/metabolismo , Curcumina/administración & dosificación , Proteína de Unión a Elemento de Respuesta al AMP Cíclico/metabolismo , Femenino , Fibroblastos/metabolismo , Humanos , Pulmón/efectos de los fármacos , Pulmón/metabolismo , Pulmón/patología , Macrófagos/metabolismo , Ratones , Ratones Endogámicos ICR , PPAR gamma/metabolismo , Prostaglandina D2/metabolismo , Fibrosis Pulmonar/metabolismo , Fibrosis Pulmonar/patología , Células RAW 264.7 , Regulación hacia Arriba/efectos de los fármacos
13.
Int Immunopharmacol ; 89(Pt A): 107047, 2020 Dec.
Artículo en Inglés | MEDLINE | ID: mdl-33039960

RESUMEN

Previously, we reported that oral administration of madecassoside, the main active triterpene in Centella asiatica L., exerted anti-arthritis effect by inducing the generation of regulatory T (Treg) cells in small intestine. This study investigates the action site and mechanism of madecassoside to induce Treg cells. In collagen-induced arthritis (CIA) of rats, oral administration of madecassoside significantly alleviated arthritis symptoms, but its main metabolite madecassic acid did not, suggesting that madecassoside functions in the parent form. Madecassoside was shown to increase the number of Treg cells and promote the expression of Foxp3 and IL-10 in rat ileum rather than duodenum and jejunum, as detected using the immunohistochemistry assay and quantitative PCR assay, respectively. Unexpectedly, madecassoside was absent of significant effect on in vitro Treg cell differentiation and the expression of Foxp3 and IL-10. A combined use of broad-spectrum antibiotics resulted in significant reduction of the anti-arthritis effect of madecassoside in CIA rats. The 16S rRNA gene sequence showed that madecassoside could reverse the changes of gut microbiota under arthritis condition, and enrich several bacteria such as Lachnospiraceae, Butyricicoccus, Faecalibacterium, Butyricicoccus pullicaecorum and so on. GC-MS assay showed that madecassoside elevated the levels of acetic acid and butyric acid, but not other short chain fatty acids (SCFAs) in the cecum contents of CIA rats. Butyric acid rather than acetic acid could induce the in vitro differentiation of Treg cells and the expression of Foxp3 and IL-10. Accordingly, when madecassoside was co-administered with heptanoyl CoA, the competitive inhibitor of butyrate synthase, its effect on butyric acid production, Treg cell proportion and arthritis nearly disappeared. These findings indicate that oral madecassoside induces the generation of Treg cells and therefore displays anti-arthritis effect in the parent form but not metabolites, and the ileum is the main action site. The mechanism of madecassoside can be summarized as: expansion of the richness of butyrate-producing bacteria-up-regulation of intestinal butyrate level-induction of Treg cell differentiation and IL-10 expression.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Microbioma Gastrointestinal/fisiología , Linfocitos T Reguladores/fisiología , Triterpenos/uso terapéutico , Animales , Antiinflamatorios/química , Antiinflamatorios/uso terapéutico , Femenino , Estructura Molecular , Ratas , Ratas Wistar , Triterpenos/química
14.
Cell Death Dis ; 11(9): 752, 2020 09 14.
Artículo en Inglés | MEDLINE | ID: mdl-32929062

RESUMEN

Type-17 immune response, mediated mainly by IL-17, plays a critical role in ulcerative colitis. Previously, we showed that madecassic acid (MA), the main active ingredient of Centella asiatica herbs for anti-colitis effect, ameliorated dextran sulfate sodium (DSS)-induced mouse colitis through reducing the level of IL-17. Here, we explore the effect of MA on the activation of γδT17 cells, an alternative source of IL-17 in colitis. In DSS-induced colitis mice, oral administration of MA decreased the number of γδT17 cells and attenuated the inflammation in the colon, and the anti-colitis effect of MA was significantly counteracted by redundant γδT17 cells, suggesting that the decrease in γδT17 cells is important for the anti-colitis effect of MA. In vitro, MA could inhibit the activation but not the proliferation of γδT17 cells at concentrations without evident cytotoxicity. Antibody microarray profiling showed that the inhibition of MA on the activation of γδT17 cells involved PPARγ-PTEN/Akt/GSK3ß/NFAT signals. In γδT17 cells, MA could reduce the nuclear localization of NFATc1 through inhibiting Akt phosphorylation to promote GSK3ß activation. Moreover, it was confirmed that MA inhibited the Akt/GSK3ß/NFATc1 pathway and the activation of γδT17 cells through activating PPARγ to increase PTEN expression and phosphorylation. The correlation between activation of PPARγ, decrease in γδT17 cell number, and amelioration of colitis by MA was validated in mice with DSS-induced colitis. In summary, these findings reveal that MA inhibits the activation of γδT17 cells through PPARγ-PTEN/Akt/GSK3ß/NFAT pathway, which contributes to the amelioration of colitis.


Asunto(s)
Colitis Ulcerosa/tratamiento farmacológico , Interleucina-17/metabolismo , PPAR gamma/metabolismo , Triterpenos/uso terapéutico , Animales , Femenino , Humanos , Ratones , Triterpenos/farmacología
15.
FASEB J ; 34(2): 3069-3090, 2020 02.
Artículo en Inglés | MEDLINE | ID: mdl-31908053

RESUMEN

Intestinal epithelial barrier dysfunction is deeply involved in the pathogenesis of inflammatory bowel diseases (IBD). Arctigenin, the main active constituent in Fructus Arctii (a traditional Chinese medicine), has previously been found to attenuate colitis induced by dextran sulfate sodium (DSS) in mice. The present study investigated whether and how arctigenin protects against the disruption of the intestinal epithelial barrier in IBD. Arctigenin maintained the intestinal epithelial barrier function of mice with DSS- and TNBS-induced colitis. In Caco-2 and HT-29 cells, arctigenin lowered the monolayer permeability, increased TEER, reversed the abnormal expression of tight junction proteins, and restored the altered localization of F-actin induced by TNF-α and IL-1ß. The specific antagonist PHTPP or shRNA of ERß largely weakened the protective effect of arctigenin on the epithelial barrier function of Caco-2 and HT-29 cells. Molecular docking demonstrated that arctigenin had high affinity for ERß mainly through hydrogen bonds as well as hydrophobic effects, and the protective effect of arctigenin on the intestinal barrier function was largely diminished in ERß-mutated (ARG346 and/or GLU305) Caco-2 cells. Moreover, arctigenin-blocked TNF-α induced increase of the monolayer permeability in Caco-2 and HT-29 cells and the activation of myosin light chain kinase (MLCK)/myosin light chain (MLC) pathway in an ERß-dependent manner. ERß deletion in colons of mice with DSS-induced colitis resulted in a significant attenuation of the protective effect of arctigenin on the barrier integrity and colon inflammation. Arctigenin maintained the integrity of the intestinal epithelial barrier under IBD by upregulating the expression of tight junction proteins through the ERß-MLCK/MLC pathway.


Asunto(s)
Receptor beta de Estrógeno/agonistas , Furanos/farmacología , Enfermedades Inflamatorias del Intestino/tratamiento farmacológico , Enfermedades Inflamatorias del Intestino/metabolismo , Mucosa Intestinal/metabolismo , Lignanos/farmacología , Animales , Células CACO-2 , Receptor beta de Estrógeno/genética , Receptor beta de Estrógeno/metabolismo , Femenino , Células HT29 , Humanos , Enfermedades Inflamatorias del Intestino/genética , Enfermedades Inflamatorias del Intestino/patología , Interleucina-1beta/genética , Interleucina-1beta/metabolismo , Mucosa Intestinal/patología , Ratones , Ratones Endogámicos BALB C , Mutación Missense , Quinasa de Cadena Ligera de Miosina/genética , Quinasa de Cadena Ligera de Miosina/metabolismo , Transducción de Señal , Factor de Necrosis Tumoral alfa/genética , Factor de Necrosis Tumoral alfa/metabolismo
16.
J Pharm Biomed Anal ; 154: 302-311, 2018 May 30.
Artículo en Inglés | MEDLINE | ID: mdl-29567573

RESUMEN

Tetrandrine is an effective ingredient isolated from the roots of a frequently used medicinal plant Stephania tetrandra S. Moore. It has been used for the management of arthritis in China, but the precise mechanism remains unclear. In the present study, a metabolomics method based on the 1H NMR was constituted to quantify the alterations of the endogenous metabolites in the urines of collagen-induced arthritis (CIA) rats treated with tetrandrine. Data showed that tetrandrine treatment could alleviate the ankle joint swelling and ameliorate histopathological changes in rats. The metabonomic analysis indicated that 23 potential biomarkers in urine were affiliated with CIA. They mainly participated in energy metabolism, amino acid metabolism, lipid metabolism and gut microbe metabolism. Moreover, our results implied that tetrandrine could reverse the pathological process of CIA through adjusting the unbalanced metabolic pathways. Thus, these metabolic pathways and potential biomarkers might be the potential therapeutic targets of tetrandrine, and these findings supplied new visions into the protective effect of tetrandrine against arthritis in rats.


Asunto(s)
Artritis Experimental/tratamiento farmacológico , Artritis Experimental/orina , Bencilisoquinolinas/farmacología , Biomarcadores/orina , Colágeno/farmacología , Orina/química , Aminoácidos/metabolismo , Animales , Artritis Experimental/inducido químicamente , Artritis Experimental/metabolismo , Biomarcadores/metabolismo , Medicamentos Herbarios Chinos/farmacología , Metabolismo Energético/efectos de los fármacos , Femenino , Metabolismo de los Lípidos/efectos de los fármacos , Redes y Vías Metabólicas/efectos de los fármacos , Metabolómica/métodos , Plantas Medicinales/química , Espectroscopía de Protones por Resonancia Magnética/métodos , Ratas
17.
Chin J Nat Med ; 16(3): 161-174, 2018 Mar.
Artículo en Inglés | MEDLINE | ID: mdl-29576052

RESUMEN

Although the etiology of inflammatory bowel disease is still uncertain, increasing evidence indicates that the excessive activation of NLRP3 inflammasome plays a major role. Norisoboldine (NOR), an alkaloid isolated from Radix Linderae, has previously been demonstrated to inhibit inflammation and IL-1ß production. The present study was to examine the effect of NOR on colitis and the underlying mechanism related to NLRP3 inflammasome activation. Our results showed that NOR alleviated colitis symptom in mice induced by 2, 4, 6-trinitrobenzene sulfonic acid (TNBS). Moreover, it significantly reduced expressions of cleaved IL-1ß, NLRP3 and cleaved Caspase-1 but not ASC in colons of mice. In THP-1 cells, NOR suppressed the expressions of NLRP3, cleaved Caspase-1 and cleaved IL-1ß but not ASC induced by lipopolysaccharide (LPS) and adenosine triphosphate (ATP). Furthermore, NOR could activate aryl hydrocarbon receptor (AhR) in THP-1 cells, inducing CYP1A1 mRNA expression, and promoting dissociation of AhR/HSP90 complexes, association of AhR and ARNT, AhR nuclear translocation, XRE reporter activity and binding activity of AhR/ARNT/XRE. Both siAhR and α-naphthoflavone (α-NF) markedly diminished the inhibition of NOR on NLRP3 inflammasome activation. In addition, NOR elevated Nrf2 level and reduced ROS level in LPS- and ATP-stimulated THP-1 cells, which was reversed by either siAhR or α-NF treatment. Finally, correlations between activation of AhR and attenuation of colitis, inhibition of NLRP3 inflammasome activation and up-regulation of Nrf2 level in colons were validated in mice with TNBS-induced colitis. Taken together, NOR ameliorated TNBS-induced colitis in mice through inhibiting NLRP3 inflammasome activation via regulating AhR/Nrf2/ROS signaling pathway.


Asunto(s)
Alcaloides/administración & dosificación , Colitis/tratamiento farmacológico , Medicamentos Herbarios Chinos/administración & dosificación , Inflamasomas/inmunología , Lindera/química , Receptores de Hidrocarburo de Aril/agonistas , Animales , Colitis/inducido químicamente , Colitis/genética , Colitis/inmunología , Humanos , Inflamasomas/efectos de los fármacos , Interleucina-1beta/genética , Interleucina-1beta/inmunología , Masculino , Ratones , Ratones Endogámicos BALB C , FN-kappa B/genética , FN-kappa B/inmunología , Receptores de Hidrocarburo de Aril/genética , Receptores de Hidrocarburo de Aril/metabolismo , Ácido Trinitrobencenosulfónico/efectos adversos
18.
FASEB J ; 32(6): 3398-3410, 2018 06.
Artículo en Inglés | MEDLINE | ID: mdl-29401630

RESUMEN

Tetrandrine, a bisbenzylisoquinoline alkaloid, was previously demonstrated to attenuate inflammation and cartilage destruction in the ankles of mice with collagen-induced arthritis (CIA). Here, we explored the underlying mechanism by which tetrandrine prevented arthritis-induced bone erosion by focusing on the differentiation and function of osteoclasts. We found that daily administration of tetrandrine (30 mg/kg) markedly reduced the bone damage and decreased the number of osteoclasts in CIA rats. In vitro, tetrandrine inhibited receptor activator of NF-κB ligand (RANKL)-induced osteoclastogenesis at the early stage and reduced the expressions of osteoclast-related marker genes. In bone marrow-derived macrophages and RAW264.7 cells, tetrandrine inhibited RANKL-induced translocation of NF-κB-p65 and nuclear factor of activated T cell 1 (NFATc1) through suppressing spleen tyrosine kinase (Syk)-Bruton's tyrosine kinase-PLCγ2-Ca2+ signaling. Of interest, tetrandrine did not affect the phosphorylation of immunoreceptor tyrosine-based activation motifs, the conventional upstream of Syk, but it inhibited the activity of Syk by enhancing its ubiquitination and degradation. The anti-osteoclastogenesis effect of tetrandrine nearly disappeared when it was used in combination with the Syk inhibitor piceatannol or in constitutively activated Syk-overexpressing cells. Taken together, tetrandrine attenuated CIA-induced bone destruction by inhibiting osteoclastogenesis through hindering the translocation of NF-κB-p65 and NFATc1 via reducing the activation of Syk.-Jia, Y., Miao, Y., Yue, M., Shu, M., Wei, Z., Dai, Y. Tetrandrine attenuates the bone erosion in collagen-induced arthritis rats by inhibiting osteoclastogenesis via spleen tyrosine kinase.


Asunto(s)
Artritis Experimental/enzimología , Bencilisoquinolinas/farmacología , Resorción Ósea/enzimología , Señalización del Calcio/efectos de los fármacos , Osteoclastos/enzimología , Quinasa Syk/metabolismo , Animales , Artritis Experimental/patología , Resorción Ósea/tratamiento farmacológico , Resorción Ósea/patología , Femenino , Osteoclastos/patología , Proteolisis/efectos de los fármacos , Ratas , Ratas Wistar , Factor de Transcripción ReIA/metabolismo , Factores de Transcripción/metabolismo , Ubiquitinación/efectos de los fármacos
19.
J Neuroinflammation ; 15(1): 6, 2018 Jan 06.
Artículo en Inglés | MEDLINE | ID: mdl-29306322

RESUMEN

BACKGROUND: Previous studies have demonstrated that oral administration of curcumin exhibited an anti-arthritic effect despite its poor bioavailability. The present study aimed to explore whether the gut-brain axis is involved in the therapeutic effect of curcumin. METHODS: The collagen-induced arthritis (CIA) rat model was induced by immunization with an emulsion of collagen II and complete Freund's adjuvant. Sympathetic and parasympathetic tones were measured by electrocardiographic recordings. Unilateral cervical vagotomy (VGX) was performed before the induction of CIA. The ChAT, AChE activities, and serum cytokine levels were determined by ELISA. The expression of the high-affinity choline transporter 1 (CHT1), ChAT, and vesicular acetylcholine transporter (VAChT) were determined by real-time PCR and immunohistochemical staining. The neuronal excitability of the vagus nerve was determined by whole-cell patch clamp recording. RESULTS: Oral administration of curcumin restored the imbalance between the sympathetic and parasympathetic tones in CIA rats and increased ChAT activity and expression of ChAT and VAChT in the gut, brain, and synovium. Additionally, VGX eliminated the effects of curcumin on arthritis and ACh biosynthesis and transport. Electrophysiological data showed that curcumin markedly increased neuronal excitability of the vagus nerve. Furthermore, selective α7 nAChR antagonists abolished the effects of curcumin on CIA. CONCLUSIONS: Our results demonstrate that curcumin attenuates CIA through the "gut-brain axis" by modulating the function of the cholinergic system. These findings provide a novel approach for mechanistic studies of anti-arthritic compounds with low oral absorption and bioavailability.


Asunto(s)
Antiinflamatorios no Esteroideos/uso terapéutico , Artritis Experimental/tratamiento farmacológico , Artritis Experimental/metabolismo , Encéfalo/metabolismo , Curcumina/uso terapéutico , Tracto Gastrointestinal/metabolismo , Acetilcolina/antagonistas & inhibidores , Acetilcolina/metabolismo , Animales , Antiinflamatorios no Esteroideos/farmacología , Artritis Experimental/patología , Encéfalo/efectos de los fármacos , Células Cultivadas , Colina O-Acetiltransferasa , Curcumina/farmacología , Femenino , Tracto Gastrointestinal/efectos de los fármacos , Proteínas de Transporte de Membrana/metabolismo , Antagonistas Nicotínicos/farmacología , Ganglio Nudoso/efectos de los fármacos , Ganglio Nudoso/metabolismo , Distribución Aleatoria , Ratas , Ratas Wistar , Vagotomía/tendencias , Nervio Vago/cirugía
20.
J Pharm Biomed Anal ; 148: 128-135, 2018 Jan 30.
Artículo en Inglés | MEDLINE | ID: mdl-29017109

RESUMEN

A specific and sensitive LC-MS/MS method was established for the simultaneous determination of bergenin, protocatechuic acid and gallic acid, the main active constituents of Saxifraga stolonifera (L.) Meerb. herb, in rat plasma. After fully validated, the method was applied to the comparative pharmacokinetic studies of the three compounds orally administered alone and in combination in the S. stolonifera extract, respectively. The results showed that the pharmacokinetic parameters, including Cmax, Tmax, AUC, CLz/F, MRT0-∞, were significantly different for both bergenin and protocatechuic acid in the extract as compared to the corresponding compounds administered alone. However, the pharmacokinetic behavior of gallic acid in the extract did not differ from that administered alone. Further studies found that quercetin, coexisting in the herb extract, significantly decreased the glucuronidation of bergenin through inhibiting the activities of UGT1A1 and UGT1A3, and reduced the metabolism of protocatechuic acid by inhibiting the activity of catechol-O-methyltransferase. Quercetin and other flavonoids occurring in the S. stolonifera extract might increase the absorption and improve the bioavailability of bergenin and protocatechuic acid by slowing down the liver metabolism. The findings provide a good guidance for the development and clinical application of S. stolonifera.


Asunto(s)
Cromatografía Liquida/métodos , Medicamentos Herbarios Chinos/farmacocinética , Extractos Vegetales/química , Extractos Vegetales/farmacocinética , Saxifragaceae/química , Espectrometría de Masas en Tándem/métodos , Animales , Benzopiranos/farmacocinética , Disponibilidad Biológica , Catecol O-Metiltransferasa/química , Medicamentos Herbarios Chinos/química , Femenino , Flavonoides/química , Flavonoides/farmacocinética , Ácido Gálico/farmacocinética , Glucuronosiltransferasa/antagonistas & inhibidores , Hidroxibenzoatos/química , Quercetina/farmacocinética , Ratas , Ratas Wistar
SELECCIÓN DE REFERENCIAS
DETALLE DE LA BÚSQUEDA